OFFSET
0,8
LINKS
Alois P. Heinz, Rows n = 0..140, flattened
K. T. Chen, R. T. Fox and R. C. Lyndon, Free differential calculus IV. The quotient groups of the lower central series, Ann. Math. 68 (1) (1958) 81-95.
J.-P. Duval, Factorizing words over an ordered Alphabet, J. Algorithms 4 (4) (1983) 363.
R. J. Mathar, A bijection of Dyck Paths and multisets of Balanced Binary Lyndon Words (2021)
FORMULA
G.f.: Product_{j>=1} 1/(1-y*x^j)^A022553(j). - Alois P. Heinz, Jul 25 2017
EXAMPLE
The triangle begins in row 0 and column 0 as:
1;
0 1;
0 1 1;
0 3 1 1;
0 8 4 1 1;
0 25 11 4 1 1;
0 75 39 12 4 1 1;
0 245 124 42 12 4 1 1;
0 800 431 138 43 12 4 1 1;
0 2700 1470 490 141 43 12 4 1 1;
0 9225 5160 1704 504 142 43 12 4 1 1;
0 32065 18160 6088 1763 507 142 43 12 4 1 1;
0 112632 64765 21790 6337 1777 508 142 43 12 4 1 1;
0 400023 232347 78845 22798 6396 1780 508 142 43 12 4 1 1;
0 1432613 840285 286652 82941 23047 6410 1781 508 142 43 12 4 1 1;
MAPLE
with(numtheory):
g:= proc(n) option remember; `if`(n=0, 1, add(
mobius(n/d)*binomial(2*d, d), d=divisors(n))/(2*n))
end:
b:= proc(n, i, p) option remember; `if`(p>n, 0, `if`(n=0, 1,
`if`(min(i, p)<1, 0, add(binomial(g(i)+j-1, j)*
b(n-i*j, i-1, p-j), j=0..min(n/i, p)))))
end:
T:= (n, k)-> b(n$2, k):
seq(seq(T(n, k), k=0..n), n=0..14); # Alois P. Heinz, Jul 25 2017
MATHEMATICA
g[n_]:=g[n]=If[n==0, 1, Sum[MoebiusMu[n/d] Binomial[2d, d], {d, Divisors[n]}]/(2n)]; b[n_, i_, p_]:=b[n, i, p]=If[p>n, 0, If[n==0, 1, If[Min[i, p]<1, 0, Sum[Binomial[g[i] + j - 1, j] b[n - i*j, i - 1, p - j], {j, 0, Min[n/i, p]}]]]]; Table[b[n, n, k], {n, 0, 14}, {k, 0, n}]//Flatten (* Indranil Ghosh, Aug 05 2017, after Maple code *)
nn = 14;
b[n_] := If[n==0, 1, Sum[MoebiusMu[n/d] Binomial[2d, d], {d, Divisors[n]}]/ (2n)];
CoefficientList[#, y]& /@ (Series[Product[1/(1 - y x^i)^b[i], {i, 1, nn}], {x, 0, nn}] // CoefficientList[#, x]&) // Flatten (* Jean-François Alcover, Oct 29 2021 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
R. J. Mathar, Jul 18 2017
STATUS
approved