login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A289978
Triangle read by rows: the multiset transform of the balanced binary Lyndon words (A022553).
3
1, 0, 1, 0, 1, 1, 0, 3, 1, 1, 0, 8, 4, 1, 1, 0, 25, 11, 4, 1, 1, 0, 75, 39, 12, 4, 1, 1, 0, 245, 124, 42, 12, 4, 1, 1, 0, 800, 431, 138, 43, 12, 4, 1, 1, 0, 2700, 1470, 490, 141, 43, 12, 4, 1, 1, 0, 9225, 5160, 1704, 504, 142, 43, 12, 4, 1, 1, 0, 32065, 18160, 6088, 1763, 507, 142, 43, 12, 4, 1, 1
OFFSET
0,8
FORMULA
G.f.: Product_{j>=1} 1/(1-y*x^j)^A022553(j). - Alois P. Heinz, Jul 25 2017
EXAMPLE
The triangle begins in row 0 and column 0 as:
1;
0 1;
0 1 1;
0 3 1 1;
0 8 4 1 1;
0 25 11 4 1 1;
0 75 39 12 4 1 1;
0 245 124 42 12 4 1 1;
0 800 431 138 43 12 4 1 1;
0 2700 1470 490 141 43 12 4 1 1;
0 9225 5160 1704 504 142 43 12 4 1 1;
0 32065 18160 6088 1763 507 142 43 12 4 1 1;
0 112632 64765 21790 6337 1777 508 142 43 12 4 1 1;
0 400023 232347 78845 22798 6396 1780 508 142 43 12 4 1 1;
0 1432613 840285 286652 82941 23047 6410 1781 508 142 43 12 4 1 1;
MAPLE
with(numtheory):
g:= proc(n) option remember; `if`(n=0, 1, add(
mobius(n/d)*binomial(2*d, d), d=divisors(n))/(2*n))
end:
b:= proc(n, i, p) option remember; `if`(p>n, 0, `if`(n=0, 1,
`if`(min(i, p)<1, 0, add(binomial(g(i)+j-1, j)*
b(n-i*j, i-1, p-j), j=0..min(n/i, p)))))
end:
T:= (n, k)-> b(n$2, k):
seq(seq(T(n, k), k=0..n), n=0..14); # Alois P. Heinz, Jul 25 2017
MATHEMATICA
g[n_]:=g[n]=If[n==0, 1, Sum[MoebiusMu[n/d] Binomial[2d, d], {d, Divisors[n]}]/(2n)]; b[n_, i_, p_]:=b[n, i, p]=If[p>n, 0, If[n==0, 1, If[Min[i, p]<1, 0, Sum[Binomial[g[i] + j - 1, j] b[n - i*j, i - 1, p - j], {j, 0, Min[n/i, p]}]]]]; Table[b[n, n, k], {n, 0, 14}, {k, 0, n}]//Flatten (* Indranil Ghosh, Aug 05 2017, after Maple code *)
nn = 14;
b[n_] := If[n==0, 1, Sum[MoebiusMu[n/d] Binomial[2d, d], {d, Divisors[n]}]/ (2n)];
CoefficientList[#, y]& /@ (Series[Product[1/(1 - y x^i)^b[i], {i, 1, nn}], {x, 0, nn}] // CoefficientList[#, x]&) // Flatten (* Jean-François Alcover, Oct 29 2021 *)
CROSSREFS
Cf. A022553 (column k=1), A000108 (row sums), A033184, A290277.
T(2n,n) gives A292287.
Sequence in context: A120060 A143295 A330892 * A185983 A179742 A285000
KEYWORD
nonn,tabl
AUTHOR
R. J. Mathar, Jul 18 2017
STATUS
approved