This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A143295 Decimal expansion of the Zolotarev-Schur constant. 1
 3, 1, 1, 0, 7, 8, 8, 6, 6, 7, 0, 4, 8, 1, 9, 2, 0, 9, 0, 2, 7, 5, 4, 6, 9, 5, 9, 0, 9, 1, 4, 2, 1, 8, 0, 2, 6, 4, 8, 9, 5, 7, 1, 5, 8, 4, 3, 2, 8, 5, 8, 6, 7, 4, 5, 4, 9, 4, 9, 4, 9, 1, 7, 0, 6, 7, 9, 5, 7, 5, 2, 8, 3, 1, 9, 2, 0, 2, 7, 5, 3, 3, 0, 7, 1, 2, 0, 5, 2, 7, 1, 6, 3, 8, 4, 9, 5, 1, 7, 1, 5, 8, 7, 0, 3 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Note that in the Reference P. Erdös and G. Szegö the numerical value of the Zolotarev-Schur constant is given (due to roundings) in the biased form 0.3124... - Heinz-Joachim Rack, Oct 03 2017 REFERENCES S. R. Finch, Mathematical Constants, Cambridge University Press, 2003, 229-231. LINKS P. Erdös and G. Szegö, On a problem of I.Schur, Ann.Math. 43(1942), 451-470. H.-J. Rack, The first Zolotarev case in the Erdös-Szegö solution to a Markov-type extremal problem of Schur, Univ.Babes-Bolyai Math. 62(2017), 151-162. Eric Weisstein's World of Mathematics, Zolotarev-Schur Constant EXAMPLE 0.31107886670481920902... MATHEMATICA c0 = c /. FindRoot[ EllipticE[c^2]^3 - 3*EllipticK[c^2]*EllipticE[c^2]^2 + (c^2 + 3*EllipticK[c^2]^2 + 1)*EllipticE[c^2] + EllipticK[c^2]*(c^2 - EllipticK[c^2]^2 - 1) == 0, {c, 9/10}, WorkingPrecision -> 110]; sigma = (1 - EllipticE[c0^2]/EllipticK[c0^2])^2/c0^2; RealDigits[sigma, 10, 105] // First (* Jean-François Alcover, Feb 07 2013, after Eric W. Weisstein *) CROSSREFS Cf. A143296. Sequence in context: A175946 A115378 A120060 * A289978 A185983 A179742 Adjacent sequences:  A143292 A143293 A143294 * A143296 A143297 A143298 KEYWORD nonn,cons AUTHOR Eric W. Weisstein, Aug 05 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 16 00:25 EDT 2018. Contains 313782 sequences. (Running on oeis4.)