login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A143298
Decimal expansion of Gieseking's constant.
22
1, 0, 1, 4, 9, 4, 1, 6, 0, 6, 4, 0, 9, 6, 5, 3, 6, 2, 5, 0, 2, 1, 2, 0, 2, 5, 5, 4, 2, 7, 4, 5, 2, 0, 2, 8, 5, 9, 4, 1, 6, 8, 9, 3, 0, 7, 5, 3, 0, 2, 9, 9, 7, 9, 2, 0, 1, 7, 4, 8, 9, 1, 0, 6, 7, 7, 6, 5, 9, 7, 4, 7, 6, 2, 5, 8, 2, 4, 4, 0, 2, 2, 1, 3, 6, 4, 7, 0, 3, 5, 4, 2, 2, 8, 2, 5, 6, 6, 9, 4, 9, 4, 5, 8, 6
OFFSET
1,4
COMMENTS
The largest possible volume of a tetrahedron in hyperbolic space. Named by Adams (1998) after German mathematician Hugo Gieseking (1887 - 1915). - Amiram Eldar, Aug 14 2020
REFERENCES
J. Borwein and P. Borwein, Experimental and computational mathematics: Selected writings, Perfectly Scientific Press, 2010, p. 106.
Steven R. Finch, Mathematical Constants, Cambridge, 2003, p. 233.
LINKS
Colin C. Adams, The newest inductee in the Number Hall of Fame, Mathematics Magazine, Vol. 71, No. 5 (1998), pp. 341-349.
John Campbell, Proof of a conjecture due to Sun concerning Catalan's constant, hal-03644515 [math], 2022.
John M. Campbell, On two conjectures due to Sun, Univ. Rochester, Online J. Analytic Comb. (2023) Issue 18, Art No. 4. See p. 4.
P. J. de Doelder, On the Clausen integral Cl_2(theta) and a related integral, J. Comp. Appl. Math. 11 (1984) 325-330.
K. S. Kolbig, Chebyshev coefficients for the Clausen function Cl_2(x), J. Comp. Appl. Math. 64 (1995) 295-297.
Vincent Nguyen, On Some Series Involving Harmonic and Skew-Harmonic Numbers, arXiv:2304.11614 [math.CA], 2023.
Eric Weisstein's World of Mathematics, Gieseking's Constant
Wikipedia, Gieseking manifold.
FORMULA
Equals (9 - PolyGamma(1, 2/3) + PolyGamma(1, 4/3))/(4*sqrt(3)).
Equals Sum_{k>0} sin(k*Pi/3)/k^2; (also equals (sqrt(3)/2)*Sum_{k>=1} -1/(6k-1)^2 - 1/(6k-2)^2 + 1/(6k-4)^2 + 1/(6k-5)^2). - Jean-François Alcover, Jun 19 2016, from the book by J. & P. Borwein.
From Amiram Eldar, Aug 14 2020: (Start)
Equals Integral_{x=0..2*Pi/3} log(2*cos(x/2)).
Equals (3*sqrt(3)/4) * (1 - Sum_{k>=0} 1/(3*k + 2)^2 + Sum_{k>=1} 1/(3*k + 1)^2) = (3*sqrt(3)/4) * Sum_{k>=1} A049347(k-1)/k^2.
Equals Pi * A244996 = Pi * log(A242710). (End)
Equals A091518/2 = A244345/5. - Hugo Pfoertner, Sep 16 2024
EXAMPLE
1.0149416064096536250...
MAPLE
sqrt(3)/6*(Psi(1, 1/3)-2*Pi^2/3) ; evalf(%) ; # R. J. Mathar, Sep 23 2013
MATHEMATICA
N[(9 - PolyGamma[1, 2/3] + PolyGamma[1, 4/3])/(4*Sqrt[3]), 105] // RealDigits // First
PROG
(PARI)
polygamma(n, x) = if (n == 0, psi(x), (-1)^(n+1)*n!*zetahurwitz(n+1, x));
sqrt(3)/6*(polygamma(1, 1/3) - 2*Pi^2/3)
(9 - polygamma(1, 2/3) + polygamma(1, 4/3))/(4*sqrt(3)) \\ Gheorghe Coserea, Sep 30 2018
(PARI)
clausen(n, x) = my(z = polylog(n, exp(I*x))); if (n%2, real(z), imag(z));
clausen(2, Pi/3) \\ Gheorghe Coserea, Sep 30 2018
(PARI)
sqrt(3)/2 * sumpos(n=1, 1/(6*n-4)^2 + 1/(6*n-5)^2 - 1/(6*n-1)^2 - 1/(6*n-2)^2) \\ Gheorghe Coserea, Sep 30 2018
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Eric W. Weisstein, Aug 05 2008
STATUS
approved