login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A085365 Decimal expansion of the Kepler-Bouwkamp or polygon-inscribing constant. 9
1, 1, 4, 9, 4, 2, 0, 4, 4, 8, 5, 3, 2, 9, 6, 2, 0, 0, 7, 0, 1, 0, 4, 0, 1, 5, 7, 4, 6, 9, 5, 9, 8, 7, 4, 2, 8, 3, 0, 7, 9, 5, 3, 3, 7, 2, 0, 0, 8, 6, 3, 5, 1, 6, 8, 4, 4, 0, 2, 3, 3, 9, 6, 5, 1, 8, 9, 6, 6, 0, 1, 2, 8, 2, 5, 3, 5, 3, 0, 5, 1, 1, 7, 7, 9, 4, 0, 7, 7, 2, 4, 8, 4, 9, 8, 5, 8, 3, 6, 9, 9, 3, 7, 6, 3, 4 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Inscribe an equilateral triangle in a circle of unit radius. Inscribe a circle in the triangle. Inscribe a square in the second circle and inscribe a circle in the square. Inscribe a regular pentagon in the third circle and so on. The radii of the circles converge to Product_{ k = 3..infinity } cos(Pi/k), which is this number. - N. J. A. Sloane, Feb 10 2008

"It is stated in Kasner and Newman's 'Mathematics and the Imagination' (pp. 269-270 in the Pelican edition) that P=Product{k=3..infinity} cos(Pi/k) is approximately equal to 1/12. Not so! ..., so that a very good approximation to P is 10/87 ...", by Grimstone. - Robert G. Wilson v, Dec 22 2013

Named after the German astronomer and mathematician Johannes Kepler (1571 - 1630) and the Dutch mathematician Christoffel Jacob Bouwkamp (1915 - 2003). - Amiram Eldar, Aug 21 2020

REFERENCES

Dick Katz, Problem 91:24, in R. K. Guy, ed., Western Number Theory Problems, 1992-12-19 & 22.

S. R. Finch, Mathematical Constants. Cambridge University Press (2003). MR 2003519.

Clifford A. Pickover, The Math Book, From Pythagoras to the 57th Dimension, 250 Milestones in the History of Mathematics, Sterling Publ., NY, 2009, p. 382.

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..1000

C. J. Bouwkamp, An infinite product, Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen: Series A: Mathematical Sciences, Vol. 68 (1965), pp. 40-46.

Hugo Brandt, Problem 2356, solved by Julian H. Braun, School Science and Mathematics, Vol. 53, No. 7 (1953), pp. 575-576.

Marc Chamberland and Armin Straub, On gamma quotients and infinite products, Advances in Applied Mathematics, Vol. 51, No. 5 (2013), pp. 546-562, preprint, arXiv:1309.3455 [math.NT], 2013. See Section 4.

Tamara Curnow, Falling down a polygonal well, Mathematical Spectrum, Vol. 26, No. 4 (1994), pp. 110-118.

Tomislav Doslic, Kepler-Bouwkamp Radius of Combinatorial Sequences, J. Int. Seq. 17 (2014) # 14.11.3.

Steven R. Finch, Errata and Addenda to Mathematical Constants, p. 58.

Clive J. Grimstone, A product of cosines, Math. Gaz. 64 (428) (1980) 120-121.

Johannes Kepler, Mysterium Cosmographicum, Tübingen, 1596. See p. 39.

M. H. Lietzke and C. W. Nestor, Jr., Problem 4793, The American Mathematical Monthly, Vol. 65, No. 6 (1958), pp. 451-452, An Infinite Sequence of Inscribed Polygons, solution to Problem 4793, solved by Julian Braun and others, ibid., Vol. 66, No. 3 (1959), pp. 242-243.

Kival Ngaokrajang, Illustration of polygon inscribing.

David Singmaster, Letter to the Editor: Kepler's polygonal well, Mathematical Spectrum, Vol. 27, No. 3 (1995), pp. 63-64.

E. Stephens, 79.52 Slowly convergent infinite products, The Mathematical Gazette, Vol. 79, No. 486 (1995), pp. 561-565.

Eric Weisstein's World of Mathematics, Polygon Inscribing.

Wikipedia, Kepler-Bouwkamp constant.

FORMULA

The log of this constant is equal to Sum_{n=1..infinity} -((2^(2*n)-1)/n) * zeta(2*n) * (zeta(2*n)-1-1/2^(2*n)). [Richard McIntosh] - N. J. A. Sloane, Feb 10 2008

Equals 1/A051762. - M. F. Hasler, May 18 2014

EXAMPLE

0.1149420448532...

MAPLE

evalf(1/(product(sec(Pi/k), k=3..infinity)), 104) # Vaclav Kotesovec, Sep 20 2014

MATHEMATICA

(* The naive approach, N[ Product[ Cos[ Pi/n], {n, 3, Infinity}], 111], yields only 27 correct decimals. - Vaclav Kotesovec, Sep 20 2014 *)

Block[{$MaxExtraPrecision = 1000}, Do[Print[N[Exp[Sum[-(2^(2*n)-1)/n * Zeta[2*n]*(Zeta[2*n] - 1 - 1/2^(2*n)), {n, 1, m}]], 110]], {m, 250, 300}]] (* over 100 decimal places are correct, Vaclav Kotesovec, Sep 20 2014 *)

PROG

(PARI) exp(sumpos(n=3, log(cos(Pi/n)))) \\ M. F. Hasler, May 18 2014

CROSSREFS

Equals 1/A051762.

Cf. A131671.

Sequence in context: A143298 A177839 A013669 * A019767 A244994 A021091

Adjacent sequences:  A085362 A085363 A085364 * A085366 A085367 A085368

KEYWORD

nonn,cons

AUTHOR

Eric W. Weisstein, Jun 25 2003

EXTENSIONS

Edited by M. F. Hasler, May 18 2014

First formula corrected (missing sign) by Vaclav Kotesovec, Sep 20 2014

Terms since 27 corrected by Vaclav Kotesovec, Sep 20 2014 (recomputed with higher precision)

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 22 07:38 EDT 2020. Contains 337950 sequences. (Running on oeis4.)