This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A085365 Decimal expansion of the Kepler-Bouwkamp or polygon-inscribing constant. 9
 1, 1, 4, 9, 4, 2, 0, 4, 4, 8, 5, 3, 2, 9, 6, 2, 0, 0, 7, 0, 1, 0, 4, 0, 1, 5, 7, 4, 6, 9, 5, 9, 8, 7, 4, 2, 8, 3, 0, 7, 9, 5, 3, 3, 7, 2, 0, 0, 8, 6, 3, 5, 1, 6, 8, 4, 4, 0, 2, 3, 3, 9, 6, 5, 1, 8, 9, 6, 6, 0, 1, 2, 8, 2, 5, 3, 5, 3, 0, 5, 1, 1, 7, 7, 9, 4, 0, 7, 7, 2, 4, 8, 4, 9, 8, 5, 8, 3, 6, 9, 9, 3, 7, 6, 3, 4 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Inscribe an equilateral triangle in a circle of unit radius. Inscribe a circle in the triangle. Inscribe a square in the second circle and inscribe a circle in the square. Inscribe a regular pentagon in the third circle and so on. The radii of the circles converge to Product_{ k = 3..infinity } cos(Pi/k), which is this number. - N. J. A. Sloane, Feb 10 2008 "It is stated in Kasner and Newman's 'Mathematics and the Imagination' (pp. 269-270 in the Pelican edition) that P=Product{k=3..infinity} cos(Pi/k) is approximately equal to 1/12. Not so! ..., so that a very good approximation to P is 10/87 ...", by Grimstone. - Robert G. Wilson v, Dec 22 2013 REFERENCES Dick Katz, Problem 91:24, in R. K. Guy, ed., Western Number Theory Problems, 1992-12-19 & 22. S. R. Finch, Mathematical Constants. Cambridge University Press (2003). MR 2003519. Clifford A. Pickover, The Math Book, From Pythagoras to the 57th Dimension, 250 Milestones in the History of Mathematics, Sterling Publ., NY, 2009, p. 382. LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..1000 M. Chamberland, A. Straub, On Gamma quotients and infinite products, arXiv:1309.3455, Section 4. T. Doslic, Kepler-Bouwkamp Radius of Combinatorial Sequences, J. Int. Seq. 17 (2014) # 14.11.3 Steven R. Finch, Errata and Addenda to Mathematical Constants, p. 58. Steven R. Finch, Errata and Addenda to Mathematical Constants, January 22, 2016. [Cached copy, with permission of the author] Clive J. Grimstone, A product of cosines, Math. Gaz. 64 (428) (1980) 120-121. Kival Ngaokrajang, Illustration of polygon inscribing R. Stephens, Slowly converging infinite products, Math. Gaz. 79 (486) (1995) 561-565. Eric Weisstein's World of Mathematics, Polygon Inscribing Wikipedia, Kepler-Bouwkamp constant FORMULA The log of this constant is equal to Sum_{n=1..infinity} -((2^(2n)-1)/n) * zeta(2n) * (zeta(2n)-1-1/2^(2n)). [Richard McIntosh] - N. J. A. Sloane, Feb 10 2008 A085365 = 1/A051762. - M. F. Hasler, May 18 2014 EXAMPLE 0.1149420448532... MAPLE evalf(1/(product(sec(Pi/k), k=3..infinity)), 104) # Vaclav Kotesovec, Sep 20 2014 MATHEMATICA (* The naive approach, N[ Product[ Cos[ Pi/n], {n, 3, Infinity}], 111], yields only 27 correct decimals. - Vaclav Kotesovec, Sep 20 2014 *) Block[{\$MaxExtraPrecision = 1000}, Do[Print[N[Exp[Sum[-(2^(2*n)-1)/n * Zeta[2*n]*(Zeta[2*n] - 1 - 1/2^(2*n)), {n, 1, m}]], 110]], {m, 250, 300}]] (* over 100 decimal places are correct, Vaclav Kotesovec, Sep 20 2014 *) PROG (PARI) exp(sumpos(n=3, log(cos(Pi/n)))) \\ M. F. Hasler, May 18 2014 CROSSREFS Equals 1/A051762. Cf. A131671. Sequence in context: A143298 A177839 A013669 * A019767 A244994 A021091 Adjacent sequences:  A085362 A085363 A085364 * A085366 A085367 A085368 KEYWORD nonn,cons AUTHOR Eric W. Weisstein, Jun 25 2003 EXTENSIONS Edited by M. F. Hasler, May 18 2014 First formula corrected (missing sign) by Vaclav Kotesovec, Sep 20 2014 Terms since 27 corrected by Vaclav Kotesovec, Sep 20 2014 (recomputed with higher precision) STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 20 04:37 EDT 2019. Contains 328247 sequences. (Running on oeis4.)