login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A244994
Decimal expansion of p_4(2), the maximum radial probability density of a 4-step uniform random walk.
2
4, 9, 4, 2, 3, 3, 7, 0, 9, 8, 8, 7, 3, 3, 2, 6, 6, 9, 1, 7, 8, 1, 8, 9, 5, 4, 4, 6, 6, 6, 4, 2, 3, 4, 2, 9, 5, 7, 4, 9, 9, 7, 0, 3, 3, 7, 3, 3, 7, 8, 2, 9, 2, 0, 3, 5, 1, 6, 1, 6, 4, 9, 7, 0, 6, 3, 5, 6, 3, 7, 5, 4, 3, 0, 4, 2, 4, 7, 3, 6, 0, 6, 4, 7, 5, 6, 2, 3, 3, 8, 4, 3, 7, 7, 0, 7, 1, 7, 8, 2, 9, 4, 4, 2, 7
OFFSET
0,1
LINKS
Jonathan M. Borwein, Armin Straub, James Wan, and Wadim Zudilin, Densities of Short Uniform Random Walks p. 971, Canad. J. Math. 64(2012), 961-990.
FORMULA
p_4(x) = (2*sqrt(16-x^2)*Re(3F2(1/2, 1/2, 1/2; 5/6, 7/6; (16-x^2)^3/(108*x^4))))/(Pi^2*x) where 3F2 is the hypergeometric function.
p_4(2) = (2^(7/3)*Pi)/(3*sqrt(3)*gamma(2/3)^6).
p_4(2) = (2*sqrt(3)*gamma(7/6))/(Pi*gamma(2/3)^2*gamma(5/6)).
EXAMPLE
0.4942337098873326691781895446664234295749970337337829203516164970635637543...
MATHEMATICA
RealDigits[2^(7/3)*Pi/(3*Sqrt[3]*Gamma[2/3]^6), 10, 105] // First
PROG
(PARI) (2^(7/3)*Pi)/(3*sqrt(3)*gamma(2/3)^6) \\ Michel Marcus, Jun 17 2015
CROSSREFS
Cf. A244995 (p_4(1)).
Sequence in context: A013669 A085365 A019767 * A021091 A096415 A189510
KEYWORD
nonn,cons,walk
AUTHOR
STATUS
approved