Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Jun 17 2015 04:08:21
%S 4,9,4,2,3,3,7,0,9,8,8,7,3,3,2,6,6,9,1,7,8,1,8,9,5,4,4,6,6,6,4,2,3,4,
%T 2,9,5,7,4,9,9,7,0,3,3,7,3,3,7,8,2,9,2,0,3,5,1,6,1,6,4,9,7,0,6,3,5,6,
%U 3,7,5,4,3,0,4,2,4,7,3,6,0,6,4,7,5,6,2,3,3,8,4,3,7,7,0,7,1,7,8,2,9,4,4,2,7
%N Decimal expansion of p_4(2), the maximum radial probability density of a 4-step uniform random walk.
%H Vincenzo Librandi, <a href="/A244994/b244994.txt">Table of n, a(n) for n = 0..10000</a>
%H Jonathan M. Borwein, Armin Straub, James Wan, and Wadim Zudilin, <a href="http://dx.doi.org/10.4153/CJM-2011-079-2">Densities of Short Uniform Random Walks</a> p. 971, Canad. J. Math. 64(2012), 961-990.
%F p_4(x) = (2*sqrt(16-x^2)*Re(3F2(1/2, 1/2, 1/2; 5/6, 7/6; (16-x^2)^3/(108*x^4))))/(Pi^2*x) where 3F2 is the hypergeometric function.
%F p_4(2) = (2^(7/3)*Pi)/(3*sqrt(3)*gamma(2/3)^6).
%F p_4(2) = (2*sqrt(3)*gamma(7/6))/(Pi*gamma(2/3)^2*gamma(5/6)).
%e 0.4942337098873326691781895446664234295749970337337829203516164970635637543...
%t RealDigits[2^(7/3)*Pi/(3*Sqrt[3]*Gamma[2/3]^6), 10, 105] // First
%o (PARI) (2^(7/3)*Pi)/(3*sqrt(3)*gamma(2/3)^6) \\ _Michel Marcus_, Jun 17 2015
%Y Cf. A244995 (p_4(1)).
%K nonn,cons,walk
%O 0,1
%A _Jean-François Alcover_, Jul 09 2014