login
A244992
Characteristic function for A244991: a(n) = A000035(A061395(n)).
7
0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1
OFFSET
1
COMMENTS
If a(n) = 1, then the largest prime p_k [where p_k = A000040(k) = A006530(n) and k = A061395(n)] dividing n has an odd index (i.e. k = 2h+1), otherwise, when a(n) = 0, it means that either n = 1 or the largest prime p_k|n has an even index (k = 2h).
LINKS
FORMULA
a(n) = A000035(A061395(n)).
For all n >= 1, a(n) = A066829(A122111(n)) and vice versa, A066829(n) = a(A122111(n)).
For all n >= 1, a(n) = 1 - A000035(A244321(n)) and a(A244322(n)) = 1 - A000035(n).
PROG
(Scheme) (define (A244992 n) (A000035 (A061395 n)))
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jul 21 2014
STATUS
approved