login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A244992
Characteristic function for A244991: a(n) = A000035(A061395(n)).
7
0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1
OFFSET
1
COMMENTS
If a(n) = 1, then the largest prime p_k [where p_k = A000040(k) = A006530(n) and k = A061395(n)] dividing n has an odd index (i.e. k = 2h+1), otherwise, when a(n) = 0, it means that either n = 1 or the largest prime p_k|n has an even index (k = 2h).
LINKS
FORMULA
a(n) = A000035(A061395(n)).
For all n >= 1, a(n) = A066829(A122111(n)) and vice versa, A066829(n) = a(A122111(n)).
For all n >= 1, a(n) = 1 - A000035(A244321(n)) and a(A244322(n)) = 1 - A000035(n).
PROG
(Scheme) (define (A244992 n) (A000035 (A061395 n)))
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jul 21 2014
STATUS
approved