login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A244995
Decimal expansion of p_4(1), a particular radial probability density of a 4-step uniform random walk.
2
3, 2, 9, 9, 3, 3, 8, 0, 1, 0, 6, 0, 0, 6, 4, 0, 5, 9, 0, 3, 9, 7, 9, 0, 6, 5, 2, 2, 8, 6, 9, 5, 2, 9, 6, 4, 6, 9, 3, 6, 8, 3, 0, 4, 8, 0, 7, 5, 8, 3, 4, 2, 7, 7, 3, 6, 0, 2, 6, 0, 3, 9, 3, 6, 2, 6, 0, 2, 7, 5, 7, 4, 2, 5, 7, 2, 6, 4, 4, 0, 5, 8, 4, 2, 3, 3, 4, 1, 5, 5, 1, 7, 2, 2, 6, 7, 4, 9, 4, 8, 8, 9, 4, 3
OFFSET
0,1
LINKS
Jonathan M. Borwein, Armin Straub, James Wan, and Wadim Zudilin, Densities of Short Uniform Random Walks p. 974, Canad. J. Math. 64(2012), 961-990.
FORMULA
p_4(x) = (2*sqrt(16-x^2)*Re(3F2(1/2, 1/2, 1/2; 5/6, 7/6; (16-x^2)^3/(108*x^4))))/(Pi^2*x) where 3F2 is the hypergeometric function.
p_4(1) = (2*sqrt(15)*Re(3F2(1/2, 1/2, 1/2; 5/6, 7/6; 125/4)))/Pi^2.
p_4(1) = (1/(2*Pi^2))*sqrt((gamma(1/15)*gamma(2/15)*gamma(4/15)*gamma(8/15))/(5*gamma(7/15)*gamma(11/15)*gamma(13/15)*gamma(14/15))).
Equals Gamma(1/15) * Gamma(2/15) * Gamma(4/15) * Gamma(8/15) / (8*sqrt(5)*Pi^4). - Vaclav Kotesovec, Jun 10 2019
EXAMPLE
0.329933801060064059039790652286952964693683048075834277360260393626...
MAPLE
evalf(GAMMA(1/15)*GAMMA(2/15)*GAMMA(4/15)*GAMMA(8/15) / (8*sqrt(5)*Pi^4), 120); # Vaclav Kotesovec, Jun 10 2019
MATHEMATICA
RealDigits[(2*Sqrt[15]*Re[HypergeometricPFQ[{1/2, 1/2, 1/2}, {5/6, 7/6}, 125/4]])/Pi^2, 10, 104] // First
CROSSREFS
Sequence in context: A199455 A287768 A197831 * A152049 A246788 A365278
KEYWORD
nonn,cons,walk
AUTHOR
STATUS
approved