|
|
A085362
|
|
a(0)=1; for n>0, a(n) = 2*5^(n-1) - (1/2)*Sum_{i=1..n-1} a(i)*a(n-i).
|
|
15
|
|
|
1, 2, 8, 34, 150, 678, 3116, 14494, 68032, 321590, 1528776, 7301142, 35003238, 168359754, 812041860, 3926147730, 19022666310, 92338836390, 448968093320, 2186194166950, 10659569748370, 52037098259090, 254308709196660
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Number of bilateral Schroeder paths (i.e. lattice paths consisting of steps U=(1,1), D=(1,-1) and H=(2,0)) from (0,0) to (2n,0) and with no H-steps at even (zero, positive or negative) levels. Example: a(2)=8 because we have UDUD, UUDD, UHD, UDDU and their reflections in the x-axis. First differences of A026375. - Emeric Deutsch, Jan 28 2004
From G. C. Greubel, May 22 2020: (Start)
This sequence is part of a class of sequences, for m >= 0, with the properties:
a(n) = 2*m*(4*m+1)^(n-1) - (1/2)*Sum_{k=1..n-1} a(k)*a(n-k).
a(n) = Sum_{k=0..n} m^k * binomial(n-1, n-k) * binomial(2*k, k).
a(n) = (2*m) * Hypergeometric2F1(-n+1, 3/2; 2; -4*m), for n > 0.
n*a(n) = 2*((2*m+1)*n - (m+1))*a(n-1) - (4*m+1)*(n-2)*a(n-2).
(4*m + 1)^n = Sum_{k=0..n} Sum_{j=0..k} a(j)*a(k-j).
G.f.: sqrt( (1 - t)/(1 - (4*m+1)*t) ).
This sequence is the case of m=1. (End)
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 0..200
László Németh, Tetrahedron trinomial coefficient transform, arXiv:1905.13475 [math.CO], 2019.
|
|
FORMULA
|
G.f.: sqrt((1-x)/(1-5*x)).
Sum_{i=0..n} (Sum_{j=0..i} a(j)*a(i-j)) = 5^n.
D-finite with recurrence: a(n) = (2*(3*n-2)*a(n-1)-5*(n-2)*a(n-2)])n; a(0)=1, a(1)=2. - Emeric Deutsch, Jan 28 2004
a(n) ~ 2*5^(n-1/2)/sqrt(Pi*n). - Vaclav Kotesovec, Oct 14 2012
G.f.: G(0), where G(k)= 1 + 4*x*(4*k+1)/( (4*k+2)*(1-x) - 2*x*(1-x)* (2*k+1)*(4*k+3)/(x*(4*k+3) + (1-x)*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 22 2013
a(n) = Sum_{k=0..n} binomial(2*k,k)*binomial(n-1,n-k). - Vladimir Kruchinin, May 30 2016
a(n) = 2*hypergeom([3/2, 1-n], [2], -4) for n>0. - Peter Luschny, Jan 30 2017
|
|
MAPLE
|
a := n -> `if`(n=0, 1, 2*hypergeom([3/2, 1-n], [2], -4)):
seq(simplify(a(n)), n=0..22); # Peter Luschny, Jan 30 2017
|
|
MATHEMATICA
|
CoefficientList[Series[Sqrt[(1-x)/(1-5x)], {x, 0, 25}], x]
|
|
PROG
|
(PARI) my(x='x+O('x^66)); Vec(sqrt((1-x)/(1-5*x))) \\ Joerg Arndt, May 10 2013
(Magma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( Sqrt((1-x)/(1-5*x)) )); // G. C. Greubel, May 23 2020
(Sage)
def A085362_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( sqrt((1-x)/(1-5*x)) ).list()
A085362_list(30) # G. C. Greubel, May 23 2020
|
|
CROSSREFS
|
Bisection of A026392.
Cf. A000351 (5^n), A026375, A026387, A085363, A085364.
Sequence in context: A245090 A151829 A026387 * A150889 A150890 A150891
Adjacent sequences: A085359 A085360 A085361 * A085363 A085364 A085365
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Mario Catalani (mario.catalani(AT)unito.it), Jun 25 2003
|
|
STATUS
|
approved
|
|
|
|