This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A085361 Decimal expansion of the number c = Sum_{n>=1} (zeta(n+1)-1)/n). 10
 7, 8, 8, 5, 3, 0, 5, 6, 5, 9, 1, 1, 5, 0, 8, 9, 6, 1, 0, 6, 0, 2, 7, 6, 3, 2, 3, 4, 5, 4, 5, 5, 4, 6, 6, 6, 4, 7, 2, 7, 4, 9, 6, 6, 8, 2, 2, 3, 2, 8, 1, 6, 4, 9, 7, 5, 5, 1, 5, 6, 4, 0, 2, 3, 0, 1, 7, 8, 0, 6, 4, 3, 5, 6, 3, 3, 0, 1, 6, 2, 2, 8, 7, 4, 7, 1, 5, 9, 2, 1, 3, 3, 2, 2, 4, 3, 1, 9, 6, 7, 5, 6 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS The Alladi-Grinstead constant (A085291) is exp(c-1). REFERENCES Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 1.8.1 Alternative representations [of real numbers], p. 62. LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Sofia Kalpazidou, Khintchine's constant for Lüroth representation, Journal of Number Theory,Volume 29, Issue 2, June 1988, Pages 196-205. Eric Weisstein's World of Mathematics, Alladi-Grinstead Constant Eric Weisstein's World of Mathematics, Convergence Improvement FORMULA c = Sum_{n>=2} log(n/(n-1))/n = Sum_{n>=1, k>=2} 1/(n*k^(n+1)). [From Mathworld links] EXAMPLE 0.78853056591150896106027632345455466647274966822328164975515640230178... MAPLE evalf(sum((Zeta(n+1)-1)/n, n=1..infinity), 120); # Vaclav Kotesovec, Dec 11 2015 MATHEMATICA Sum[(-1+Zeta[1+n])/n, {n, Infinity}] NSum[Log[k]/(k*(k+1)), {k, 1, Infinity}, WorkingPrecision -> 120, NSumTerms ->5000, Method -> {NIntegrate, MaxRecursion -> 100}] (* Vaclav Kotesovec, Dec 11 2015 *) PROG (PARI) suminf(n=1, (zeta(n+1)-1-2^(-n-1))/n)+log(2)/2 \\ Charles R Greathouse IV, Feb 20 2012 (Sage) import mpmath mpmath.mp.pretty=True; mpmath.mp.dps=108 #precision mpmath.nsum(lambda n: (-1+mpmath.zeta(1+n))/n, [1, mpmath.inf]) # Peter Luschny, Jul 14 2012 (Sage) numerical_approx(sum((zeta(k+1)-1)/k for k in [1..1000]), digits=120) # G. C. Greubel, Nov 15 2018 (MAGMA) SetDefaultRealField(RealField(120)); L:=RiemannZeta(); (&+[(Evaluate(L, n+1)-1)/n: n in [1..1000]]); // G. C. Greubel, Nov 15 2018 CROSSREFS Cf. A002210, A085291, A244109. Sequence in context: A019861 A065470 A197810 * A256781 A248224 A092290 Adjacent sequences:  A085358 A085359 A085360 * A085362 A085363 A085364 KEYWORD nonn,cons AUTHOR Eric W. Weisstein, Jun 25 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 19 00:55 EDT 2019. Contains 324217 sequences. (Running on oeis4.)