The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A242624 Decimal expansion of Product_{n>1} (1-1/n)^(1/n). 4
 4, 5, 4, 5, 1, 2, 1, 8, 0, 5, 1, 4, 6, 4, 6, 3, 1, 7, 0, 3, 2, 8, 0, 1, 4, 6, 3, 6, 8, 4, 3, 2, 7, 3, 9, 9, 3, 0, 7, 5, 8, 6, 8, 1, 2, 2, 6, 9, 9, 5, 4, 4, 3, 6, 0, 4, 9, 3, 4, 8, 9, 2, 3, 6, 5, 9, 2, 7, 0, 7, 6, 1, 5, 1, 1, 2, 3, 2, 6, 2, 5, 1, 5, 6, 1, 0, 0, 1, 5, 4, 0, 9, 6, 0, 5, 5, 4, 2, 4, 9 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 REFERENCES S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 2.9 p. 122. LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 EXAMPLE 0.4545121805146463170328014636843273993... MAPLE evalf(exp(-sum((1-Zeta(n))/(1-n), n=2..infinity)), 120); # Vaclav Kotesovec, Dec 11 2015 MATHEMATICA Exp[-NSum[(1-Zeta[n])/(1-n), {n, 2, Infinity}, NSumTerms -> 300, WorkingPrecision -> 110]] // RealDigits[#, 10, 100]& // First PROG (PARI) default(realprecision, 100); exp(suminf(n=2, (zeta(n)-1)/(1-n))) \\ G. C. Greubel, Nov 15 2018 (MAGMA) SetDefaultRealField(RealField(100)); L:=RiemannZeta();  Exp((&+[(Evaluate(L, n)-1)/(1-n): n in [2..10^3]])); // G. C. Greubel, Nov 15 2018 (Sage)  numerical_approx(exp(sum((zeta(k)-1)/(1-k) for k in [2..1000])), digits=100) # G. C. Greubel, Nov 15 2018 CROSSREFS Cf. A242623, A244625. Sequence in context: A125583 A196619 A063694 * A068901 A010710 A021026 Adjacent sequences:  A242621 A242622 A242623 * A242625 A242626 A242627 KEYWORD nonn,cons AUTHOR Jean-François Alcover, May 19 2014 EXTENSIONS Mma modified and data extended by Jean-François Alcover, May 23 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 22 23:44 EST 2020. Contains 332157 sequences. (Running on oeis4.)