login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245254
Decimal expansion of U = Product_{k>=1} (k^(1/(k*(k+1)))), a Khintchine-like limiting constant related to Lüroth's representation of real numbers.
3
2, 2, 0, 0, 1, 6, 1, 0, 5, 8, 0, 9, 9, 0, 2, 6, 5, 5, 3, 1, 9, 4, 5, 5, 7, 8, 6, 6, 5, 5, 9, 9, 4, 4, 8, 7, 2, 6, 8, 5, 6, 6, 2, 3, 2, 4, 7, 5, 2, 7, 2, 3, 8, 8, 8, 7, 2, 3, 1, 4, 5, 1, 1, 7, 7, 6, 3, 1, 6, 9, 0, 1, 1, 2, 6, 9, 6, 6, 5, 9, 4, 7, 5, 8, 4, 7, 0, 2, 9, 7, 3, 4, 7, 2, 6, 8, 0, 7, 6, 2, 5, 8, 1, 6, 1
OFFSET
1,1
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 1.8.1 Alternative representations [of real numbers], p. 62.
LINKS
Sofia Kalpazidou, Khintchine's constant for Lüroth representation, Journal of Number Theory, Vol. 29, No. 2 (June 1988), pp. 196-205.
FORMULA
U = exp(A085361).
U*V*W = 1, where V is A244109 and W is A131688.
Equals e * A085291. - Amiram Eldar, Jun 27 2021
Equals 1/A242624. - Amiram Eldar, Feb 06 2022
EXAMPLE
2.200161058099026553194557866559944872685662324752723888723145117763169...
MAPLE
evalf(exp(Sum((Zeta(n+1)-1)/n, n=1..infinity)), 120); # Vaclav Kotesovec, Dec 11 2015
MATHEMATICA
Exp[NSum[Log[k]/(k*(k+1)), {k, 1, Infinity}, WorkingPrecision -> 120, NSumTerms -> 5000, Method -> {NIntegrate, MaxRecursion -> 100}]] (* Vaclav Kotesovec, Dec 11 2015 *)
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
EXTENSIONS
Corrected by Vaclav Kotesovec, Dec 11 2015
STATUS
approved