login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A347088
a(n) = A055155(n) - d(n), where A055155(n) = Sum_{d|n} gcd(d, n/d) and d(n) gives the number of divisors of n.
2
0, 0, 0, 1, 0, 0, 0, 2, 2, 0, 0, 2, 0, 0, 0, 5, 0, 4, 0, 2, 0, 0, 0, 4, 4, 0, 4, 2, 0, 0, 0, 8, 0, 0, 0, 11, 0, 0, 0, 4, 0, 0, 0, 2, 4, 0, 0, 10, 6, 8, 0, 2, 0, 8, 0, 4, 0, 0, 0, 4, 0, 0, 4, 15, 0, 0, 0, 2, 0, 0, 0, 18, 0, 0, 8, 2, 0, 0, 0, 10, 12, 0, 0, 4, 0, 0, 0, 4, 0, 8, 0, 2, 0, 0, 0, 16, 0, 12, 4, 19, 0, 0, 0, 4, 0
OFFSET
1,8
LINKS
FORMULA
a(n) = A055155(n) - A000005(n).
PROG
(PARI)
A055155(n) = sumdiv(n, d, gcd(d, n/d)); \\ From A055155
A347088(n) = (A055155(n)-numdiv(n));
(Python)
from sympy import gcd, divisors, divisor_count
def A347088(n): return sum(gcd(d, n//d) for d in divisors(n, generator=True)) - divisor_count(n) # Chai Wah Wu, Aug 19 2021
CROSSREFS
Cf. A000005, A005117 (positions of zeros), A055155, A347089.
Sequence in context: A245254 A059080 A062070 * A343991 A239395 A182004
KEYWORD
nonn
AUTHOR
Antti Karttunen, Aug 17 2021
STATUS
approved