login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A182004
Expansion of q^(-1/4) * (eta(q^4) * eta(q^25) + eta(q) * eta(q^100))^2 / (eta(q^2) * eta(q^50)) in powers of q.
2
1, 0, 1, 2, -2, 0, 0, -2, 0, 2, 2, 0, 1, 2, 0, -2, 0, 0, -2, 0, 1, 0, 2, 0, -2, -2, 0, -2, -2, 2, 1, 0, 0, 0, -2, 0, 0, -2, -2, 2, 0, 0, 3, 2, 0, -2, 0, 0, -2, 2, 0, 0, 0, 0, 0, -4, 0, -2, -2, 0, 2, 0, 0, 0, -2, -2, 0, -2, 0, 2, 2, 0, 3, 2, 0, 0, 0, 0, -2, 2, 0
OFFSET
0,4
COMMENTS
In Koehler, page 212 is an example 1 defining f = f_1 + 2f_{13} + f_{25} whose q-expansion is this sequence.
LINKS
G. Köhler, Eta products of weight 1 and level 36, Arch. Math. 76 (2001) 202-214.
FORMULA
a(n) = b(4*n + 1) where b(n) is multiplicative with b(2^e) = b(5^e) = 0^e, b(p^e) = (1 + (-1)^e)/2 if p == 3 (mod 4), b(p^e) = (e + 1) * s^e where s = Kronecker(10, p) for other primes p.
G.f. is a period 1 Fourier series which satisfies f(-1 / (1600 t)) = 40 (t/i) f(t) where q = exp(2 Pi i t).
G.f.: (1/4) * Sum_{i, j in Z} Kronecker(10, i^2 + j^2) * x^(i^2 + j^2).
EXAMPLE
G.f. = 1 + x^2 + 2*x^3 - 2*x^4 - 2*x^7 + 2*x^9 + 2*x^10 + x^12 + 2*x^13 + ...
G.f. = q + q^9 + 2*q^13 - 2*q^17 - 2*q^29 + 2*q^37 + 2*q^41 + q^49 + 2*q^53 + ...
MATHEMATICA
eta[q_]:= q^(1/24)*QPochhammer[q]; CoefficientList[Series[q^(-1/4)* (eta[q^4]*eta[q^25] + eta[q]*eta[q^100])^2/(eta[q^2]*eta[q^50]), {q, 0, 50}], q] (* G. C. Greubel, Aug 11 2018 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^4 + A) * eta(x^25 + A) + x^3 * eta(x + A) * eta(x^100 + A))^2 / (eta(x^2 + A) * eta(x^50 + A)), n))};
(PARI) {a(n) = my(A, p, e); if( n<0, 0, A = factor( 4*n + 1 ); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2 || p==5, 0, p%4==3, (1 + (-1)^e) / 2, (e+1) * kronecker( 10, p) ^ e )))};
CROSSREFS
Sequence in context: A347088 A343991 A239395 * A179851 A347534 A134015
KEYWORD
sign
AUTHOR
Michael Somos, Apr 06 2012
STATUS
approved