login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of q^(-1/4) * (eta(q^4) * eta(q^25) + eta(q) * eta(q^100))^2 / (eta(q^2) * eta(q^50)) in powers of q.
2

%I #23 Sep 07 2018 03:08:48

%S 1,0,1,2,-2,0,0,-2,0,2,2,0,1,2,0,-2,0,0,-2,0,1,0,2,0,-2,-2,0,-2,-2,2,

%T 1,0,0,0,-2,0,0,-2,-2,2,0,0,3,2,0,-2,0,0,-2,2,0,0,0,0,0,-4,0,-2,-2,0,

%U 2,0,0,0,-2,-2,0,-2,0,2,2,0,3,2,0,0,0,0,-2,2,0

%N Expansion of q^(-1/4) * (eta(q^4) * eta(q^25) + eta(q) * eta(q^100))^2 / (eta(q^2) * eta(q^50)) in powers of q.

%C In Koehler, page 212 is an example 1 defining f = f_1 + 2f_{13} + f_{25} whose q-expansion is this sequence.

%H G. C. Greubel, <a href="/A182004/b182004.txt">Table of n, a(n) for n = 0..2500</a>

%H G. Köhler, <a href="https://doi.org/10.1007/s000130050561">Eta products of weight 1 and level 36</a>, Arch. Math. 76 (2001) 202-214.

%F a(n) = b(4*n + 1) where b(n) is multiplicative with b(2^e) = b(5^e) = 0^e, b(p^e) = (1 + (-1)^e)/2 if p == 3 (mod 4), b(p^e) = (e + 1) * s^e where s = Kronecker(10, p) for other primes p.

%F G.f. is a period 1 Fourier series which satisfies f(-1 / (1600 t)) = 40 (t/i) f(t) where q = exp(2 Pi i t).

%F G.f.: (1/4) * Sum_{i, j in Z} Kronecker(10, i^2 + j^2) * x^(i^2 + j^2).

%e G.f. = 1 + x^2 + 2*x^3 - 2*x^4 - 2*x^7 + 2*x^9 + 2*x^10 + x^12 + 2*x^13 + ...

%e G.f. = q + q^9 + 2*q^13 - 2*q^17 - 2*q^29 + 2*q^37 + 2*q^41 + q^49 + 2*q^53 + ...

%t eta[q_]:= q^(1/24)*QPochhammer[q]; CoefficientList[Series[q^(-1/4)* (eta[q^4]*eta[q^25] + eta[q]*eta[q^100])^2/(eta[q^2]*eta[q^50]), {q, 0, 50}], q] (* _G. C. Greubel_, Aug 11 2018 *)

%o (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^4 + A) * eta(x^25 + A) + x^3 * eta(x + A) * eta(x^100 + A))^2 / (eta(x^2 + A) * eta(x^50 + A)), n))};

%o (PARI) {a(n) = my(A, p, e); if( n<0, 0, A = factor( 4*n + 1 ); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2 || p==5, 0, p%4==3, (1 + (-1)^e) / 2, (e+1) * kronecker( 10, p) ^ e )))};

%K sign

%O 0,4

%A _Michael Somos_, Apr 06 2012