login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A055155
a(n) = Sum_{d|n} gcd(d, n/d).
13
1, 2, 2, 4, 2, 4, 2, 6, 5, 4, 2, 8, 2, 4, 4, 10, 2, 10, 2, 8, 4, 4, 2, 12, 7, 4, 8, 8, 2, 8, 2, 14, 4, 4, 4, 20, 2, 4, 4, 12, 2, 8, 2, 8, 10, 4, 2, 20, 9, 14, 4, 8, 2, 16, 4, 12, 4, 4, 2, 16, 2, 4, 10, 22, 4, 8, 2, 8, 4, 8, 2, 30, 2, 4, 14, 8, 4, 8, 2, 20, 17, 4, 2, 16, 4, 4, 4, 12, 2, 20, 4, 8, 4, 4
OFFSET
1,2
COMMENTS
a(n) is odd iff n is odd square. - Vladeta Jovovic, Aug 27 2002
From Robert Israel, Dec 26 2015: (Start)
a(n) >= A000005(n), with equality iff n is squarefree (i.e., is in A005117).
a(n) = 2 iff n is prime. (End)
LINKS
Ekkehard Krätzel, Werner Nowak and László Tóth, On certain arithmetic functions involving the greatest common divisor, Cent. Eur. J. Math., Vol. 10, No. 2 (2012), pp. 761-774.
Manfred Kühleitner and Werner Georg Nowak, On a question of A. Schinzel: Omega estimates for a special type of arithmetic functions, Central European Journal of Mathematics, Vol. 11, No. 3 (2013), pp. 477-486, preprint, arXiv: 1204.1146 [math.NT], 2012.
László Tóth, Multiplicative arithmetic functions of several variables: a survey, in: T. Rassias and P. Pardalos (eds.), Mathematics Without Boundaries, Springer, New York, N.Y., 2014, pp. 483-514, arXiv preprint, arXiv:1310.7053 [math.NT], 2013-2014.
FORMULA
Multiplicative with a(p^e) = (p^(e/2)*(p+1)-2)/(p-1) for even e and a(p^e) = 2*(p^((e+1)/2)-1)/(p-1) for odd e. - Vladeta Jovovic, Nov 01 2001
Dirichlet g.f.: (zeta(s))^2*zeta(2s-1)/zeta(2s); inverse Mobius transform of A000188. - R. J. Mathar, Feb 16 2011
Dirichlet convolution of A069290 and A008966. - R. J. Mathar, Oct 31 2011
Sum_{k=1..n} a(k) ~ 3*n / (2*Pi^6) * (Pi^4 * log(n)^2 + ((8*g - 2)*Pi^4 - 24 * Pi^2 * z1) * log(n) + 2*Pi^4 * (1 - 4*g + 5*g^2 - 6*sg1) + 288 * z1^2 - 24 * Pi^2 * (-z1 + 4*g*z1 + z2)), where g is the Euler-Mascheroni constant A001620, sg1 is the first Stieltjes constant A082633, z1 = Zeta'(2) = A073002, z2 = Zeta''(2) = A201994. - Vaclav Kotesovec, Feb 01 2019
a(n) = (1/n)*Sum_{i=1..n} sigma(gcd(n,i^2)). - Ridouane Oudra, Dec 30 2020
a(n) = Sum_{k=1..n} gcd(gcd(n,k),n/gcd(n,k))/phi(n/gcd(n,k)), where phi = A000010. - Richard L. Ollerton, May 09 2021
EXAMPLE
a(9) = gcd(1,9) + gcd(3,3) + gcd(9,1) = 5, since 1, 3, 9 are the positive divisors of 9.
MAPLE
N:= 1000: # to get a(1) to a(N)
V:= Vector(N):
for k from 1 to N do
for j from 1 to floor(N/k) do
V[k*j]:= V[k*j]+igcd(k, j)
od
od:
convert(V, list); # Robert Israel, Dec 26 2015
MATHEMATICA
Table[DivisorSum[n, GCD[#, n/#] &], {n, 94}] (* Michael De Vlieger, Sep 23 2017 *)
f[p_, e_] := If[EvenQ[e], (p^(e/2)*(p+1)-2)/(p-1), 2*(p^((e+1)/2)-1)/(p-1)]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Sep 30 2020 *)
PROG
(PARI) a(n) = sumdiv(n, d, gcd(d, n/d)); \\ Michel Marcus, Aug 03 2016
(Python)
from sympy import divisors, gcd
def A055155(n): return sum(gcd(d, n//d) for d in divisors(n, generator=True)) # Chai Wah Wu, Aug 19 2021
KEYWORD
easy,nonn,mult
AUTHOR
Leroy Quet, Jul 02 2000
STATUS
approved