Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #78 Nov 28 2023 13:05:45
%S 1,2,2,4,2,4,2,6,5,4,2,8,2,4,4,10,2,10,2,8,4,4,2,12,7,4,8,8,2,8,2,14,
%T 4,4,4,20,2,4,4,12,2,8,2,8,10,4,2,20,9,14,4,8,2,16,4,12,4,4,2,16,2,4,
%U 10,22,4,8,2,8,4,8,2,30,2,4,14,8,4,8,2,20,17,4,2,16,4,4,4,12,2,20,4,8,4,4
%N a(n) = Sum_{d|n} gcd(d, n/d).
%C a(n) is odd iff n is odd square. - _Vladeta Jovovic_, Aug 27 2002
%C From _Robert Israel_, Dec 26 2015: (Start)
%C a(n) >= A000005(n), with equality iff n is squarefree (i.e., is in A005117).
%C a(n) = 2 iff n is prime. (End)
%H Robert Israel, <a href="/A055155/b055155.txt">Table of n, a(n) for n = 1..10000</a>
%H Ekkehard Krätzel, Werner Nowak and László Tóth, <a href="https://eudml.org/doc/269485">On certain arithmetic functions involving the greatest common divisor</a>, Cent. Eur. J. Math., Vol. 10, No. 2 (2012), pp. 761-774.
%H Manfred Kühleitner and Werner Georg Nowak, <a href="https://doi.org/10.2478/s11533-012-0143-2">On a question of A. Schinzel: Omega estimates for a special type of arithmetic functions</a>, Central European Journal of Mathematics, Vol. 11, No. 3 (2013), pp. 477-486, <a href="http://arxiv.org/abs/1204.1146">preprint</a>, arXiv: 1204.1146 [math.NT], 2012.
%H Project Euler, <a href="https://projecteuler.net/problem=530">Problem 530 - GCD of Divisors</a>.
%H László Tóth, <a href="https://doi.org/10.1007/978-1-4939-1106-6_19">Multiplicative arithmetic functions of several variables: a survey</a>, in: T. Rassias and P. Pardalos (eds.), Mathematics Without Boundaries, Springer, New York, N.Y., 2014, pp. 483-514, <a href="http://arxiv.org/abs/1310.7053">arXiv preprint</a>, arXiv:1310.7053 [math.NT], 2013-2014.
%F Multiplicative with a(p^e) = (p^(e/2)*(p+1)-2)/(p-1) for even e and a(p^e) = 2*(p^((e+1)/2)-1)/(p-1) for odd e. - _Vladeta Jovovic_, Nov 01 2001
%F Dirichlet g.f.: (zeta(s))^2*zeta(2s-1)/zeta(2s); inverse Mobius transform of A000188. - _R. J. Mathar_, Feb 16 2011
%F Dirichlet convolution of A069290 and A008966. - _R. J. Mathar_, Oct 31 2011
%F Sum_{k=1..n} a(k) ~ 3*n / (2*Pi^6) * (Pi^4 * log(n)^2 + ((8*g - 2)*Pi^4 - 24 * Pi^2 * z1) * log(n) + 2*Pi^4 * (1 - 4*g + 5*g^2 - 6*sg1) + 288 * z1^2 - 24 * Pi^2 * (-z1 + 4*g*z1 + z2)), where g is the Euler-Mascheroni constant A001620, sg1 is the first Stieltjes constant A082633, z1 = Zeta'(2) = A073002, z2 = Zeta''(2) = A201994. - _Vaclav Kotesovec_, Feb 01 2019
%F a(n) = (1/n)*Sum_{i=1..n} sigma(gcd(n,i^2)). - _Ridouane Oudra_, Dec 30 2020
%F a(n) = Sum_{k=1..n} gcd(gcd(n,k),n/gcd(n,k))/phi(n/gcd(n,k)), where phi = A000010. - _Richard L. Ollerton_, May 09 2021
%e a(9) = gcd(1,9) + gcd(3,3) + gcd(9,1) = 5, since 1, 3, 9 are the positive divisors of 9.
%p N:= 1000: # to get a(1) to a(N)
%p V:= Vector(N):
%p for k from 1 to N do
%p for j from 1 to floor(N/k) do
%p V[k*j]:= V[k*j]+igcd(k,j)
%p od
%p od:
%p convert(V,list); # _Robert Israel_, Dec 26 2015
%t Table[DivisorSum[n, GCD[#, n/#] &], {n, 94}] (* _Michael De Vlieger_, Sep 23 2017 *)
%t f[p_, e_] := If[EvenQ[e], (p^(e/2)*(p+1)-2)/(p-1), 2*(p^((e+1)/2)-1)/(p-1)]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* _Amiram Eldar_, Sep 30 2020 *)
%o (PARI) a(n) = sumdiv(n, d, gcd(d, n/d)); \\ _Michel Marcus_, Aug 03 2016
%o (Python)
%o from sympy import divisors, gcd
%o def A055155(n): return sum(gcd(d,n//d) for d in divisors(n,generator=True)) # _Chai Wah Wu_, Aug 19 2021
%Y Cf. A000005, A000188, A001620, A005117, A057670, A073002. A082633, A201994.
%Y Cf. A000010.
%K easy,nonn,mult
%O 1,2
%A _Leroy Quet_, Jul 02 2000