login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322327
a(n) = A005361(n) * A034444(n).
13
1, 2, 2, 4, 2, 4, 2, 6, 4, 4, 2, 8, 2, 4, 4, 8, 2, 8, 2, 8, 4, 4, 2, 12, 4, 4, 6, 8, 2, 8, 2, 10, 4, 4, 4, 16, 2, 4, 4, 12, 2, 8, 2, 8, 8, 4, 2, 16, 4, 8, 4, 8, 2, 12, 4, 12, 4, 4, 2, 16, 2, 4, 8, 12, 4, 8, 2, 8, 4, 8, 2, 24, 2, 4, 8, 8, 4, 8, 2, 16, 8, 4, 2, 16, 4, 4, 4, 12, 2, 16, 4, 8, 4, 4, 4, 20, 2, 8, 8, 16
OFFSET
1,2
COMMENTS
Conjecture: Let k be some fixed integer and a_k(n) = A005361(n) * k^A001221(n) for n > 0 with 0^0 = 1. Then a_k(n) is multiplicative with a_k(p^e) = k*e for prime p and e > 0. For k = 0 see A000007 (offset 1), for k = 1 see A005361, for k = 2 see this sequence, for k = 3 see A226602 (offset 1), and for k = 4 see A322328.
Dirichlet inverse b(n) [= A355837(n)] is multiplicative with b(p^e) = 2 * (e mod 2) * (-1)^((e+1)/2) for prime p and e > 0.
FORMULA
Multiplicative with a(p^e) = 2*e for prime p and e > 0.
Dirichlet g. f.: (zeta(s))^2 * zeta(2*s) / zeta(4*s).
Equals Dirichlet convolution of A000005 and A227291.
Sum_{k=1..n} a(k) ~ 15*(log(n) + 2*gamma - 1 + 12*zeta'(2)/Pi^2 - 360*zeta'(4)/Pi^4) * n / Pi^2 + 6*zeta(1/2)^2 * sqrt(n) / Pi^2, where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Sep 20 2020
a(n) = A005361(n^2) = A286324(n^2). - Amiram Eldar, Dec 09 2023
MATHEMATICA
a[n_] := If[n==1, 1, Module[{f = FactorInteger[n]}, 2^Length[f] * Times@@f[[;; , 2]]]]; Array[a, 100] (* Amiram Eldar, Dec 03 2018 *)
PROG
(PARI) a(n) = my(f=factor(n)); vecprod(f[, 2])*2^omega(n); \\ Michel Marcus, Dec 04 2018
(PARI) A322327(n) = factorback(apply(e -> e+e, factor(n)[, 2])); \\ Antti Karttunen, Jul 18 2022
(Python)
from math import prod
from sympy import factorint
def A322327(n): return prod(e<<1 for e in factorint(n).values()) # Chai Wah Wu, Dec 26 2022
CROSSREFS
KEYWORD
nonn,easy,mult
AUTHOR
Werner Schulte, Dec 03 2018
EXTENSIONS
Data section extended up to a(100) by Antti Karttunen, Jul 18 2022
STATUS
approved