login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322324
Square array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = Product_{p|n, p prime} (1 - p^k).
1
1, 1, 0, 1, -1, 0, 1, -3, -2, 0, 1, -7, -8, -1, 0, 1, -15, -26, -3, -4, 0, 1, -31, -80, -7, -24, 2, 0, 1, -63, -242, -15, -124, 24, -6, 0, 1, -127, -728, -31, -624, 182, -48, -1, 0, 1, -255, -2186, -63, -3124, 1200, -342, -3, -2, 0, 1, -511, -6560, -127, -15624, 7502, -2400, -7, -8, 4, 0
OFFSET
1,8
LINKS
FORMULA
G.f. of column k: Sum_{j>=1} mu(j)*j^k*x^j/(1 - x^j).
Dirichlet g.f. of column k: zeta(s)/zeta(s-k).
A(n,k) = Sum_{d|n} mu(d)*d^k.
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, -1, -3, -7, -15, -31, ...
0, -2, -8, -26, -80, -242, ...
0, -1, -3, -7, -15, -31, ...
0, -4, -24, -124, -624, -3124, ...
0, 2, 24, 182, 1200, 7502, ...
MATHEMATICA
Table[Function[k, Product[1 - Boole[PrimeQ[d]] d^k, {d, Divisors[n]}]][i - n], {i, 0, 11}, {n, 1, i}] // Flatten
Table[Function[k, SeriesCoefficient[Sum[MoebiusMu[j] j^k x^j/(1 - x^j), {j, 1, n}], {x, 0, n}]][i - n], {i, 0, 11}, {n, 1, i}] // Flatten
Table[Function[k, Sum[MoebiusMu[d] d^k, {d, Divisors[n]}]][i - n], {i, 0, 11}, {n, 1, i}] // Flatten
PROG
(PARI) T(n, k) = sumdiv(n, d, moebius(d)*d^k);
matrix(6, 6, n, k, T(n, k-1)) \\ Michel Marcus, Dec 03 2018
CROSSREFS
Columns k=0..5 give A063524, A023900, A046970, A063453, A189922, A189923.
Cf. A008683, A059379, A059380, A321222 (diagonal).
Sequence in context: A253669 A154477 A363674 * A142071 A350448 A291680
KEYWORD
sign,tabl
AUTHOR
Ilya Gutkovskiy, Dec 03 2018
STATUS
approved