OFFSET
0,9
FORMULA
T(n,n) = A098118(n).
EXAMPLE
Square array starts:
[n\k][0 1 2 3 4 5 6]
[0] 0, 1, -1, 2, -6, 24, -120, ...
[1] 0, 1, 3, -4, 10, -36, 168, ...
[2] 0, 1, 7, 26, -46, 144, -624, ...
[3] 0, 1, 11, 74, 342, -756, 2844, ...
[4] 0, 1, 15, 146, 1066, 5944, -15768, ...
[5] 0, 1, 19, 242, 2414, 19524, 127860, ...
[6] 0, 1, 23, 362, 4578, 48504, 434568, ...
The first few rows as a triangle:
0,
0, 1,
0, 1, -1,
0, 1, 3, 2,
0, 1, 7, -4, -6,
0, 1, 11, 26, 10, 24,
0, 1, 15, 74, -46, -36, -120,
0, 1, 19, 146, 342, 144, 168, 720.
MAPLE
T := (n, k) -> k!*coeff(series(ln(x+1)*add(binomial(2*n, j)*x^j, j=0..n), x, k+1), x, k): for n from 0 to 6 do lprint(seq(T(n, k), k=0..6)) od;
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Peter Luschny, Jan 18 2015
STATUS
approved