login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A253667
Square array read by ascending antidiagonals, T(n, k) = k!*[x^k](exp(-x) *sum(j=0..n, C(n,j)*x^j)), n>=0, k>=0.
1
1, 1, -1, 1, 0, 1, 1, 1, -1, -1, 1, 2, -1, 2, 1, 1, 3, 1, -1, -3, -1, 1, 4, 5, -4, 5, 4, 1, 1, 5, 11, -1, 1, -11, -5, -1, 1, 6, 19, 14, -15, 14, 19, 6, 1, 1, 7, 29, 47, -19, 19, -47, -29, -7, -1, 1, 8, 41, 104, 37, -56, 37, 104, 41, 8, 1
OFFSET
0,12
FORMULA
T(n,n) = A009940(n).
EXAMPLE
Square array starts:
[n\k][0 1 2 3 4 5 6]
[0] 1, -1, 1, -1, 1, -1, 1, ...
[1] 1, 0, -1, 2, -3, 4, -5, ...
[2] 1, 1, -1, -1, 5, -11, 19, ...
[3] 1, 2, 1, -4, 1, 14, -47, ...
[4] 1, 3, 5, -1, -15, 19, 37, ...
[5] 1, 4, 11, 14, -19, -56, 151, ...
[6] 1, 5, 19, 47, 37, -151, -185, ...
The first few rows as a triangle:
1,
1, -1,
1, 0, 1,
1, 1, -1, -1,
1, 2, -1, 2, 1,
1, 3, 1, -1, -3, -1,
1, 4, 5, -4, 5, 4, 1.
MAPLE
T := (n, k) -> k!*coeff(series(exp(-x)*add(binomial(n, j)*x^j, j=0..n), x, k+1), x, k): for n from 0 to 6 do lprint(seq(T(n, k), k=0..6)) od;
CROSSREFS
Cf. A009940.
Sequence in context: A261095 A249809 A075104 * A360189 A368210 A233932
KEYWORD
sign,tabl
AUTHOR
Peter Luschny, Jan 18 2015
STATUS
approved