login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A253667
Square array read by ascending antidiagonals, T(n, k) = k!*[x^k](exp(-x) *sum(j=0..n, C(n,j)*x^j)), n>=0, k>=0.
1
1, 1, -1, 1, 0, 1, 1, 1, -1, -1, 1, 2, -1, 2, 1, 1, 3, 1, -1, -3, -1, 1, 4, 5, -4, 5, 4, 1, 1, 5, 11, -1, 1, -11, -5, -1, 1, 6, 19, 14, -15, 14, 19, 6, 1, 1, 7, 29, 47, -19, 19, -47, -29, -7, -1, 1, 8, 41, 104, 37, -56, 37, 104, 41, 8, 1
OFFSET
0,12
FORMULA
T(n,n) = A009940(n).
EXAMPLE
Square array starts:
[n\k][0 1 2 3 4 5 6]
[0] 1, -1, 1, -1, 1, -1, 1, ...
[1] 1, 0, -1, 2, -3, 4, -5, ...
[2] 1, 1, -1, -1, 5, -11, 19, ...
[3] 1, 2, 1, -4, 1, 14, -47, ...
[4] 1, 3, 5, -1, -15, 19, 37, ...
[5] 1, 4, 11, 14, -19, -56, 151, ...
[6] 1, 5, 19, 47, 37, -151, -185, ...
The first few rows as a triangle:
1,
1, -1,
1, 0, 1,
1, 1, -1, -1,
1, 2, -1, 2, 1,
1, 3, 1, -1, -3, -1,
1, 4, 5, -4, 5, 4, 1.
MAPLE
T := (n, k) -> k!*coeff(series(exp(-x)*add(binomial(n, j)*x^j, j=0..n), x, k+1), x, k): for n from 0 to 6 do lprint(seq(T(n, k), k=0..6)) od;
CROSSREFS
Cf. A009940.
Sequence in context: A261095 A249809 A075104 * A360189 A368210 A233932
KEYWORD
sign,tabl
AUTHOR
Peter Luschny, Jan 18 2015
STATUS
approved