login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A009940
a(n) = n!*L_{n}(1), where L_{n}(x) is the n-th Laguerre polynomial.
28
1, 0, -1, -4, -15, -56, -185, -204, 6209, 112400, 1520271, 19165420, 237686449, 2944654296, 36392001815, 441823808804, 5066513855745, 49021548330016, 202510138910239, -8592616658156580, -399625593156546319
OFFSET
0,4
COMMENTS
Previous name was: Form the iterate f[ f[ .. f[ 1 ] ] ] or f^n [ 1 ] with f[ stuff ] defined as ( stuff - Integrate[ stuff over x ] ), set x=1 and multiply by n!.
This presumably means the recurrence L(n+1,x) = L(n,x) - Integral_{t=0..x} L(n,t) dt with L(0,x) = 1, which is satisfied by the Laguerre polynomials. - Robert Israel, Jan 09 2015
LINKS
Anne-Maria Ernvall-Hytönen and Tapani Matala-aho, Explicit estimates for the sum Sum_{k=0..n}  k!*binomial(n,k)^2*(-1)^k, arXiv:2310.11468 [math.NT], 2023.
Eric Weisstein's World of Mathematics, Laguerre Polynomial.
FORMULA
From C. Ronaldo (aga_new_ac(AT)hotmail.com), Dec 19 2004: (Start)
E.g.f.: exp(x/(x-1))/(1-x).
D-finite with recurrence a(n) = 2*(n-1)*a(n-1)-(n-1)^2*a(n-2) for n>1, a(0)=1, a(1)=0.
a(n) = n!*Laguerre(n, 1). (End)
a(n) = n!*Sum_{k=0..n} (-1)^k*Binomial(n,k)/k!. - Benedict W. J. Irwin, Apr 20 2017
a(n) ~ sqrt(2) * n^(n + 1/4) / exp(n - 1/2) * (sin(2*sqrt(n) + Pi/4) + (17*cos(2*sqrt(n) + Pi/4)) / (48*sqrt(n))). - Vaclav Kotesovec, Feb 25 2019
Sum_{n>=0} a(n) * x^n / (n!)^2 = exp(x) * BesselJ(0,2*sqrt(x)). - Ilya Gutkovskiy, Jul 17 2020
From Peter Bala, Mar 12 2023: (Start)
a(n) = n! * [x^n] (1 + x)^n*exp(-x).
a(n + k) == (-1)^k*a(n) (mod k) for all n and k. It follows that the sequence a(n) taken modulo 2*k is periodic with the period dividing 2*k. See A047974. (End)
EXAMPLE
The first few f[ x ] are 1, 1 - x, 1 - 2*x + x^2/2, 1 - 3*x + (3*x^2)/2 - x^3/6, giving the values 1, 0, -1/2, -2/3, ...
MAPLE
seq(coeff(series(exp(x/(x-1))/(1-x), x, 50), x, i)*i!, i=0..20);
A009940:=proc(n) options remember: if n<2 then RETURN([1, 0][n+1]) else RETURN(2*(n-1)*A009940(n-1)-(n-1)^2*A009940(n-2)) fi: end; seq(A009940(n), n=0..20);
with(orthopoly): seq(n!*L(n, 1), n=0..20); # C. Ronaldo, Dec 19 2004
MATHEMATICA
(NestList[ #-Integrate[ #, x ]&, 1, 32 ]/.x:>1) Range[ 0, 32 ]!
Table[ n! LaguerreL[ n, 1 ], {n, 18} ]
Table[n! Sum[(-1)^k Binomial[n, k]/k!, {k, 0, n}], {n, 0, 10}] (* Benedict W. J. Irwin, Apr 20 2017 *)
PROG
(PARI) my(x='x+O('x^30)); Vec(serlaplace(exp(x/(x-1))/(1-x))) \\ G. C. Greubel, Feb 05 2018
(PARI) a(n) = n!*pollaguerre(n, 0, 1); \\ Michel Marcus, Feb 06 2021
(Magma) I:=[1, 0]; [n le 2 select I[n] else 2*(n-1)*Self(n-1) - (n-1)^2*Self(n-2): n in [1..30]]; // G. C. Greubel, Feb 05 2018
CROSSREFS
Row sums of A021009.
Sequence in context: A047018 A064813 A183932 * A081163 A082133 A060111
KEYWORD
sign,easy
EXTENSIONS
New name using a formula from W. Meeussen's program by Peter Luschny, Jan 09 2015
STATUS
approved