login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A082133
Expansion of e.g.f. x*exp(2*x)*cosh(x).
4
0, 1, 4, 15, 56, 205, 732, 2555, 8752, 29529, 98420, 324775, 1062888, 3454373, 11160268, 35872275, 114791264, 365897137, 1162261476, 3680494655, 11622614680, 36611236221, 115063885244, 360882185515, 1129718145936
OFFSET
0,3
COMMENTS
Binomial transform of A057711. 2nd binomial transform of (0,1,0,3,0,5,0,7,...).
FORMULA
a(n) = n*(1^(n-1) + 3^(n-1))/2.
E.g.f.: x*exp(2x)*cosh(x).
G.f.: x*(1-4*x+5*x^2) / ( (3*x-1)^2*(x-1)^2 ). - R. J. Mathar, Nov 24 2012
a(n) = Sum_{k=1..n} (Sum_{j=1..3} Stirling2(n,j)). - G. C. Greubel, Feb 07 2018
MAPLE
with (combinat):seq(sum(sum(stirling2(n, j), j=1..3), k=1..n), n=0..24); # Zerinvary Lajos, Dec 04 2007
MATHEMATICA
With[{nn=30}, CoefficientList[Series[x Exp[2x]Cosh[x], {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Apr 30 2012 *)
Table[n*(1^(n-1) + 3^(n-1))/2, {n, 0, 30}] (* G. C. Greubel, Feb 05 2018 *)
Table[Sum[Sum[StirlingS2[n, j], {j, 1, 3}], {k, 1, n}], {n, 0, 30}] (* G. C. Greubel, Feb 07 2018 *)
PROG
(PARI) for(n=0, 30, print1(n*(1^(n-1) + 3^(n-1))/2, ", ")) \\ G. C. Greubel, Feb 05 2018
(Magma) [n*(1^(n-1) + 3^(n-1))/2: n in [0..30]]; // G. C. Greubel, Feb 05 2018
(GAP) List([0..10^2], n->Sum([1..n], k->Sum([1..3], j->Stirling2(n, j)))); # Muniru A Asiru, Feb 06 2018
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Apr 06 2003
EXTENSIONS
Definition clarified by Harvey P. Dale, Apr 30 2012
STATUS
approved