login
A082135
Expansion of e.g.f. x*exp(4*x)*cosh(x).
5
0, 1, 8, 51, 304, 1765, 10104, 57239, 321248, 1787337, 9864040, 54035707, 294031632, 1590368429, 8556082136, 45812239455, 244255416256, 1297362967441, 6867617339592, 36243304518083, 190746485895920, 1001394643462773
OFFSET
0,3
COMMENTS
Binomial transform of A082134. 4th binomial transform of (0,1,0,3,0,5,0,7,...).
FORMULA
a(n) = n*(3^(n-1) + 5^(n-1))/2.
E.g.f.: x*exp(4x)*cosh(x).
G.f.: x*(17*x^2-8*x+1) / ((3*x-1)^2*(5*x-1)^2). [Colin Barker, Dec 10 2012]
MATHEMATICA
With[{nn = 20}, CoefficientList[Series[x Exp[4*x] Cosh[x], {x, 0, nn}], x] Range[0, nn]!] (* T. D. Noe, Dec 10 2012 *)
Table[n*(3^(n-1)+5^(n-1))/2, {n, 0, 30}] (* G. C. Greubel, Feb 05 2018 *)
LinearRecurrence[{16, -94, 240, -225}, {0, 1, 8, 51}, 40] (* Harvey P. Dale, Sep 13 2024 *)
PROG
(PARI) for(n=0, 30, print1(n*(3^(n-1)+5^(n-1))/2, ", ")) \\ G. C. Greubel, Feb 05 2018
(Magma) [n*(3^(n-1)+5^(n-1))/2: n in [0..30]]; // G. C. Greubel, Feb 05 2018
CROSSREFS
Sequence in context: A240360 A069325 A295348 * A153594 A344055 A316594
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Apr 06 2003
STATUS
approved