login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A082135
Expansion of e.g.f. x*exp(4*x)*cosh(x).
5
0, 1, 8, 51, 304, 1765, 10104, 57239, 321248, 1787337, 9864040, 54035707, 294031632, 1590368429, 8556082136, 45812239455, 244255416256, 1297362967441, 6867617339592, 36243304518083, 190746485895920, 1001394643462773
OFFSET
0,3
COMMENTS
Binomial transform of A082134. 4th binomial transform of (0,1,0,3,0,5,0,7,...).
FORMULA
a(n) = n*(3^(n-1) + 5^(n-1))/2.
E.g.f.: x*exp(4x)*cosh(x).
G.f.: x*(17*x^2-8*x+1) / ((3*x-1)^2*(5*x-1)^2). [Colin Barker, Dec 10 2012]
MATHEMATICA
With[{nn = 20}, CoefficientList[Series[x Exp[4*x] Cosh[x], {x, 0, nn}], x] Range[0, nn]!] (* T. D. Noe, Dec 10 2012 *)
Table[n*(3^(n-1)+5^(n-1))/2, {n, 0, 30}] (* G. C. Greubel, Feb 05 2018 *)
LinearRecurrence[{16, -94, 240, -225}, {0, 1, 8, 51}, 40] (* Harvey P. Dale, Sep 13 2024 *)
PROG
(PARI) for(n=0, 30, print1(n*(3^(n-1)+5^(n-1))/2, ", ")) \\ G. C. Greubel, Feb 05 2018
(Magma) [n*(3^(n-1)+5^(n-1))/2: n in [0..30]]; // G. C. Greubel, Feb 05 2018
CROSSREFS
Sequence in context: A240360 A069325 A295348 * A153594 A344055 A316594
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Apr 06 2003
STATUS
approved