login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A344055
a(n) = 2^n * n! * [x^n](exp(2*x) * BesselI(1, x)).
0
0, 1, 8, 51, 304, 1770, 10224, 58947, 340064, 1964862, 11374000, 65966318, 383289504, 2230877428, 13005037920, 75923905635, 443837331648, 2597761611894, 15221636471088, 89283411393018, 524194439193120, 3080311943546124, 18115458433730592, 106618075368243534
OFFSET
0,3
FORMULA
a(n) = [x^n] (1/(2*x))*(1 - (4*x - 1)/(sqrt((6*x - 1)*(2*x - 1)))).
D-finite with recurrence a(n) = 4*(3*(n^2 - n)*a(n - 2) - (2*n^2 - n)*a(n - 1))/(1 - n^2) for n >= 2.
The INVERT transform of A052177.
a(n) ~ 2^(n - 1/2) * 3^(n + 1/2) / sqrt(Pi*n). - Vaclav Kotesovec, May 12 2021
MAPLE
gf := exp(2*x)*BesselI(1, x):
ser := series(gf, x, 32): seq(2^n*n!*coeff(ser, x, n), n = 0..23);
# Or:
gf := (1/(2*x))*(1 - (4*x - 1)/(sqrt((6*x - 1)*(2*x - 1)))):
ser := series(gf, x, 32): seq(coeff(ser, x, n), n = 0..23);
MATHEMATICA
RecurrenceTable[{(1 - n^2) a[n] == 4 (3 (n^2 - n) a[n - 2] - (2 n^2 - n) a[n - 1]), a[0] == 0, a[1] == 1}, a, {n, 0, 23}]
CROSSREFS
Cf. A052177.
Sequence in context: A295348 A082135 A153594 * A316594 A037697 A037606
KEYWORD
nonn,easy
AUTHOR
Peter Luschny, May 12 2021
STATUS
approved