login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A344052
a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n, k)*E1(n, k).
1
1, -1, -1, 8, 19, -276, -1002, 21216, 103395, -2881180, -17620142, 609297072, 4483215086, -185182296040, -1592692090420, 76512069014400, 753146574607395, -41256108712556460, -457383584443526790, 28138583115102810000, 346933879489006727610, -23683708768534714984920
OFFSET
0,4
COMMENTS
Inverse binomial convolution of the first order Eulerian numbers (A173018).
FORMULA
a(n) = Sum_{k=0..n} Sum_{j=0..k} (-1)^(n - k - j)*(j - k - 1)^n * binomial(n, k)* binomial(n+1, j).
MAPLE
A344052 := n -> add((-1)^(n-k)*binomial(n, k)*combinat:-eulerian1(n, k), k=0..n):
seq(A344052(n), n=0..21);
MATHEMATICA
a[n_] := Sum[Sum[(-1)^(n - k - j)(j - k - 1)^n Binomial[n, k] Binomial[n + 1, j], {j, 0, k}], {k, 0, n}]; Table[a[n], {n, 0, 20}]
CROSSREFS
Cf. A173018, A011818 (binomial convolution).
Sequence in context: A119284 A177124 A153704 * A316201 A029845 A124972
KEYWORD
sign
AUTHOR
Peter Luschny, May 10 2021
STATUS
approved