OFFSET
0,4
COMMENTS
The Eulerian transform of the squares.
FORMULA
a(n) = n! * [x^n] x^2*(-x^2 + x - 3)/(6*(x - 1)^3).
a(n) = Sum_{k=0..n} Sum_{j=0..k} (-1)^j*binomial(n + 1, j)*k^2*(k + 1 - j)^n.
a(n) = ((n - 3)*(n - 1)*(23*n - 44)*a(n-2) + ((159 - 7*n)*n - 286)*a(n-1))/(16*(n - 2)) for n >= 3.
MAPLE
a := n -> add(combinat[eulerian1](n, k)*k^2, k = 0..n):
# Recurrence:
a := proc(n) option remember; if n < 2 then 0 elif n = 2 then 1 else
((n-3)*(n-1)*(23*n-44)*a(n-2) + ((159 - 7*n)*n - 286)*a(n-1))/(16*(n - 2)) fi end:
seq(a(n), n = 0..29);
MATHEMATICA
a[n_] := Sum[Sum[(-1)^j Binomial[n + 1, j] k^2 (k + 1 - j)^n, {j, 0, k}], {k, 0, n}]; a[0] := 0; Table[a[n], {n, 0, 25}]
PROG
(SageMath)
def aList(len):
R.<x> = PowerSeriesRing(QQ, default_prec=len+2)
f = x^2*(-x^2 + x - 3)/(6*(x - 1)^3)
return f.egf_to_ogf().list()[:len]
print(aList(20))
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, May 11 2021
STATUS
approved