login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A103194
LAH transform of squares.
9
0, 1, 6, 39, 292, 2505, 24306, 263431, 3154824, 41368977, 589410910, 9064804551, 149641946796, 2638693215769, 49490245341642, 983607047803815, 20646947498718736, 456392479671188001, 10595402429677269174, 257723100178182605287, 6553958557721713088820
OFFSET
0,3
COMMENTS
If the e.g.f. of b(n) is E(x) and a(n) = Sum_{k=0..n} C(n,k)^2*(n-k)!*b(k), then the e.g.f. of a(n) is E(x/(1-x))/(1-x). - Vladeta Jovovic, Apr 16 2005
a(n) is the total number of elements in all partial permutations (injective partial functions) of {1,2,...,n} that are in a cycle. A fixed point is considered to be in a cycle. a(n) = Sum_{k=0..n} A206703(n,k)*k. - Geoffrey Critzer, Feb 11 2012
a(n) is the total number of elements in all partial permutations (injective partial functions) of {1,2,...,n} that are undefined, i.e., they do not have an image.- Geoffrey Critzer, Feb 09 2022
a(n) is the total length of all increasing subsequences over all n-permutations. Cf. A002720. - Geoffrey Critzer, Feb 09 2022
LINKS
P. Flajolet and R. Sedgewick, Analytic Combinatorics, Cambridge Univ. Press, 2009, page 132.
N. J. A. Sloane, Transforms
FORMULA
a(n) = Sum_{k=0..n} (n!/k!)*binomial(n-1, k-1)*k^2.
E.g.f.: x/(1-x)^2*exp(x/(1-x)).
Recurrence: (n-1)*a(n) - n*(2*n-1)*a(n-1) + n*(n-1)^2*a(n-2) = 0.
a(n) = n*A000262(n). - Vladeta Jovovic, Mar 20 2005
a(n) ~ n! * exp(-1/2 + 2*sqrt(n))*n^(1/4)/(2*sqrt(Pi)). - Vaclav Kotesovec, Aug 13 2013
a(n) = n!*hypergeom([2, 1-n], [1, 1], -1). - Peter Luschny, Mar 30 2015
MAPLE
with(combstruct): SetSeqSetL := [T, {T=Set(S), S=Sequence(U, card >= 1), U=Set(Z, card=1)}, labeled]: seq(k*count(SetSeqSetL, size=k), k=0..18); # Zerinvary Lajos, Jun 06 2007
a := n -> n!*hypergeom([2, 1-n], [1, 1], -1):
seq(simplify(a(n)), n=0..20); # Peter Luschny, Mar 30 2015
MATHEMATICA
nn = 20; a = 1/(1 - x); ay = 1/(1 - y x); D[Range[0, nn]! CoefficientList[ Series[Exp[a x] ay, {x, 0, nn}], x], y] /. y -> 1 (* Geoffrey Critzer, Feb 11 2012 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Mar 18 2005
STATUS
approved