login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A231482 The number of nonlinear normal modes for a fully resonant Hamiltonian system with n degrees of freedom. 1
1, 6, 39, 284, 2205, 17730, 145635, 1213560, 10218105, 86717630, 740526303, 6355522068, 54771976597, 473667151482, 4108390253595, 35725327438320, 311346430241265, 2718678371881590, 23780515097337495, 208330621395422220, 1827615453799100301 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

The n-th term is the number of complex solutions to the algebraic equation for periodic orbits for the Hamiltonian H_2 + H_4, where H_2 is the sum of (p_j^2+q_j^2) (j=1..n) and H_4 is a generic homogeneous quartic which is invariant under the Hamiltonian flow generated by H_2, so this is a Hamiltonian in normal form.

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..1000

D. van Straten, A note on the number of periodic orbits near a resonant equilibrium point, Nonlinearity 2 (1989) 445-458.

FORMULA

G.f. (for offset 0): (1-x)^(-3/2)*(1-9*x)^(-1/2).

Recurrence: (n-1)*a(n) = 2*(5*n-7)*a(n-1) - 9*(n-1)*a(n-2). - Vaclav Kotesovec, Feb 14 2014

a(n) ~ sqrt(2) * 3^(2*n+1) / (32*sqrt(Pi*n)). - Vaclav Kotesovec, Feb 14 2014

MATHEMATICA

CoefficientList[Series[(1-x)^(-3/2)*(1-9*x)^(-1/2), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 14 2014 *)

PROG

(PARI) lista(nn) = {x = xx + xx*O(xx^nn); expr = (1-x)^(-3/2)*(1-9*x)^(-1/2); for (i=0, nn, print1(polcoeff(expr, i, xx), ", "); ); } \\ Michel Marcus, Nov 10 2013

CROSSREFS

Sequence in context: A006633 A153392 A253077 * A122827 A103194 A009018

Adjacent sequences:  A231479 A231480 A231481 * A231483 A231484 A231485

KEYWORD

nonn

AUTHOR

James Montaldi, Nov 09 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 21 02:50 EDT 2021. Contains 345351 sequences. (Running on oeis4.)