login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A231482
The number of nonlinear normal modes for a fully resonant Hamiltonian system with n degrees of freedom.
1
1, 6, 39, 284, 2205, 17730, 145635, 1213560, 10218105, 86717630, 740526303, 6355522068, 54771976597, 473667151482, 4108390253595, 35725327438320, 311346430241265, 2718678371881590, 23780515097337495, 208330621395422220, 1827615453799100301
OFFSET
1,2
COMMENTS
The n-th term is the number of complex solutions to the algebraic equation for periodic orbits for the Hamiltonian H_2 + H_4, where H_2 is the sum of (p_j^2+q_j^2) (j=1..n) and H_4 is a generic homogeneous quartic which is invariant under the Hamiltonian flow generated by H_2, so this is a Hamiltonian in normal form.
LINKS
Khazhgali Kozhasov, Alan Muniz, Yang Qi, and Luca Sodomaco, On the minimal algebraic complexity of the rank-one approximation problem for general inner products, arXiv:2309.15105 [math.AG], 2023. See p. 13.
FORMULA
G.f. (for offset 0): (1-x)^(-3/2)*(1-9*x)^(-1/2).
Recurrence: (n-1)*a(n) = 2*(5*n-7)*a(n-1) - 9*(n-1)*a(n-2). - Vaclav Kotesovec, Feb 14 2014
a(n) ~ sqrt(2) * 3^(2*n+1) / (32*sqrt(Pi*n)). - Vaclav Kotesovec, Feb 14 2014
MATHEMATICA
CoefficientList[Series[(1-x)^(-3/2)*(1-9*x)^(-1/2), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 14 2014 *)
PROG
(PARI) lista(nn) = {x = xx + xx*O(xx^nn); expr = (1-x)^(-3/2)*(1-9*x)^(-1/2); for (i=0, nn, print1(polcoeff(expr, i, xx), ", "); ); } \\ Michel Marcus, Nov 10 2013
CROSSREFS
Sequence in context: A006633 A153392 A253077 * A367233 A122827 A103194
KEYWORD
nonn
AUTHOR
James Montaldi, Nov 09 2013
STATUS
approved