Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #42 Feb 10 2022 13:38:16
%S 0,1,6,39,292,2505,24306,263431,3154824,41368977,589410910,9064804551,
%T 149641946796,2638693215769,49490245341642,983607047803815,
%U 20646947498718736,456392479671188001,10595402429677269174,257723100178182605287,6553958557721713088820
%N LAH transform of squares.
%C If the e.g.f. of b(n) is E(x) and a(n) = Sum_{k=0..n} C(n,k)^2*(n-k)!*b(k), then the e.g.f. of a(n) is E(x/(1-x))/(1-x). - _Vladeta Jovovic_, Apr 16 2005
%C a(n) is the total number of elements in all partial permutations (injective partial functions) of {1,2,...,n} that are in a cycle. A fixed point is considered to be in a cycle. a(n) = Sum_{k=0..n} A206703(n,k)*k. - _Geoffrey Critzer_, Feb 11 2012
%C a(n) is the total number of elements in all partial permutations (injective partial functions) of {1,2,...,n} that are undefined, i.e., they do not have an image.- _Geoffrey Critzer_, Feb 09 2022
%C a(n) is the total length of all increasing subsequences over all n-permutations. Cf. A002720. - _Geoffrey Critzer_, Feb 09 2022
%H Alois P. Heinz, <a href="/A103194/b103194.txt">Table of n, a(n) for n = 0..200</a>
%H P. Flajolet and R. Sedgewick, <a href="http://algo.inria.fr/flajolet/Publications/AnaCombi/anacombi.html">Analytic Combinatorics</a>, Cambridge Univ. Press, 2009, page 132.
%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>
%F a(n) = Sum_{k=0..n} (n!/k!)*binomial(n-1, k-1)*k^2.
%F E.g.f.: x/(1-x)^2*exp(x/(1-x)).
%F Recurrence: (n-1)*a(n) - n*(2*n-1)*a(n-1) + n*(n-1)^2*a(n-2) = 0.
%F a(n) = n*A000262(n). - _Vladeta Jovovic_, Mar 20 2005
%F a(n) ~ n! * exp(-1/2 + 2*sqrt(n))*n^(1/4)/(2*sqrt(Pi)). - _Vaclav Kotesovec_, Aug 13 2013
%F a(n) = n!*hypergeom([2, 1-n], [1, 1], -1). - _Peter Luschny_, Mar 30 2015
%p with(combstruct): SetSeqSetL := [T, {T=Set(S), S=Sequence(U, card >= 1), U=Set(Z, card=1)}, labeled]: seq(k*count(SetSeqSetL, size=k), k=0..18); # _Zerinvary Lajos_, Jun 06 2007
%p a := n -> n!*hypergeom([2, 1-n], [1, 1], -1):
%p seq(simplify(a(n)),n=0..20); # _Peter Luschny_, Mar 30 2015
%t nn = 20; a = 1/(1 - x); ay = 1/(1 - y x); D[Range[0, nn]! CoefficientList[ Series[Exp[a x] ay, {x, 0, nn}], x], y] /. y -> 1 (* _Geoffrey Critzer_, Feb 11 2012 *)
%Y Cf. A000262, A000290, A001477, A206703.
%K easy,nonn
%O 0,3
%A _Vladeta Jovovic_, Mar 18 2005