OFFSET
0,4
REFERENCES
Mohammad K. Azarian, On the Fixed Points of a Function and the Fixed Points of its Composite Functions, International Journal of Pure and Applied Mathematics, Vol. 46, No. 1, 2008, pp. 37-44. Mathematical Reviews, MR2433713 (2009c:65129), March 2009. Zentralblatt MATH, Zbl 1160.65015.
Mohammad K. Azarian, Fixed Points of a Quadratic Polynomial, Problem 841, College Mathematics Journal, Vol. 38, No. 1, January 2007, p. 60. Solution published in Vol. 39, No. 1, January 2008, pp. 66-67.
LINKS
Alois P. Heinz, Rows n = 0..140, flattened
Philippe Flajolet and Robert Sedgewick, Analytic Combinatorics, Cambridge Univ. Press, 2009, page 132.
FORMULA
E.g.f.: exp(x/(1-x))/(1-y*x).
From Alois P. Heinz, Feb 19 2022: (Start)
Sum_{k=1..n} T(n,k) = A052852.
Sum_{k=0..n} k * T(n,k) = A103194(n).
Sum_{k=0..n} (n-k) * T(n,k) = A105219(n).
Sum_{k=0..n} (-1)^k * T(n,k) = A331725(n). (End)
EXAMPLE
1;
1, 1;
3, 2, 2;
13, 9, 6, 6;
73, 52, 36, 24, 24;
501, 365, 260, 180, 120, 120;
4051, 3006, 2190, 1560, 1080, 720, 720;
...
MAPLE
b:= proc(n) option remember; `if`(n=0, 1, add((p-> p+x^j*
coeff(p, x, 0))(b(n-j)*binomial(n-1, j-1)*j!), j=1..n))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n)):
seq(T(n), n=0..10); # Alois P. Heinz, Feb 19 2022
MATHEMATICA
nn = 7; a = 1/(1 - x); ay = 1/(1 - y x); f[list_] := Select[list, # > 0 &]; Map[f, Range[0, nn]! CoefficientList[Series[Exp[a x] ay, {x, 0, nn}], {x, y}]] // Flatten
KEYWORD
nonn,tabl
AUTHOR
Geoffrey Critzer, Feb 11 2012
STATUS
approved