login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A206706
Triangle read by rows, T(n,k) n>=0, 0<=k<=n; T(0,0) = -1 and for n > 0 T(n,k) = moebius(n,k+1) - moebius(n,k) where moebius(n,k) = mu(floor(n/k)) if k<>0 and k divides n, 0 otherwise; mu=A008683.
2
-1, 1, -1, -1, 2, -1, -1, 1, 1, -1, 0, -1, 1, 1, -1, -1, 1, 0, 0, 1, -1, 1, -2, 0, 1, 0, 1, -1, -1, 1, 0, 0, 0, 0, 1, -1, 0, 0, 0, -1, 1, 0, 0, 1, -1, 0, 0, -1, 1, 0, 0, 0, 0, 1, -1, 1, -2, 1, 0, -1, 1, 0, 0, 0, 1, -1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0
OFFSET
0,5
COMMENTS
This is a variant of Paul D. Hanna's A123706 which uses a definition given by Mats Granvik. It adds the column T(n,0) = mu(n) at the left hand side of the triangle.
The value T(0,0) was set to -1 to make the triangle invertible as a matrix with uniform signs of the entries of the inverse.
EXAMPLE
[ 0] -1,
[ 1] 1, -1,
[ 2] -1, 2, -1,
[ 3] -1, 1, 1, -1,
[ 4] 0, -1, 1, 1, -1,
[ 5] -1, 1, 0, 0, 1, -1,
[ 6] 1, -2, 0, 1, 0, 1, -1,
[ 7] -1, 1, 0, 0, 0, 0, 1, -1,
[ 8] 0, 0, 0, -1, 1, 0, 0, 1, -1,
[ 9] 0, 0, -1, 1, 0, 0, 0, 0, 1, -1,
The inverse of this triangle as a matrix begins
[-1, 0, 0, 0, 0, 0, 0]
[-1, -1, 0, 0, 0, 0, 0]
[-1, -2, -1, 0, 0, 0, 0]
[-1, -3, -1, -1, 0, 0, 0]
[-1, -4, -2, -1, -1, 0, 0]
[-1, -5, -2, -1, -1, -1, 0]
[-1, -6, -3, -2, -1, -1, -1]
MAPLE
with(numtheory): A206706 := proc(n, k) local moebius;
moebius := (n, k) -> `if`(k<>0 and irem(n, k) = 0, mobius(iquo(n, k)), 0);
moebius(n, k+1) - moebius(n, k) end:
MATHEMATICA
mu[n_, k_] := If[k != 0 && Divisible[n, k], MoebiusMu[n/k], 0];
T[0, 0] = -1; T[n_, k_] /; 0 <= k <= n := mu[n, k+1] - mu[n, k];
Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 12 2019 *)
PROG
(Sage)
def mur(n, k): return moebius(n//k) if k != 0 and n%k == 0 else 0
def A206706(n, k) : return -1 if n==0 and k==0 else mur(n, k+1) - mur(n, k)
CROSSREFS
Sequence in context: A378528 A267611 A178666 * A302354 A000164 A330261
KEYWORD
sign,tabl
AUTHOR
Peter Luschny, Feb 11 2012
STATUS
approved