Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Mar 07 2020 09:04:02
%S -1,1,-1,-1,2,-1,-1,1,1,-1,0,-1,1,1,-1,-1,1,0,0,1,-1,1,-2,0,1,0,1,-1,
%T -1,1,0,0,0,0,1,-1,0,0,0,-1,1,0,0,1,-1,0,0,-1,1,0,0,0,0,1,-1,1,-2,1,0,
%U -1,1,0,0,0,1,-1,-1,1,0,0,0,0,0,0,0,0,1,-1,0
%N Triangle read by rows, T(n,k) n>=0, 0<=k<=n; T(0,0) = -1 and for n > 0 T(n,k) = moebius(n,k+1) - moebius(n,k) where moebius(n,k) = mu(floor(n/k)) if k<>0 and k divides n, 0 otherwise; mu=A008683.
%C This is a variant of Paul D. Hanna's A123706 which uses a definition given by Mats Granvik. It adds the column T(n,0) = mu(n) at the left hand side of the triangle.
%C The value T(0,0) was set to -1 to make the triangle invertible as a matrix with uniform signs of the entries of the inverse.
%e [ 0] -1,
%e [ 1] 1, -1,
%e [ 2] -1, 2, -1,
%e [ 3] -1, 1, 1, -1,
%e [ 4] 0, -1, 1, 1, -1,
%e [ 5] -1, 1, 0, 0, 1, -1,
%e [ 6] 1, -2, 0, 1, 0, 1, -1,
%e [ 7] -1, 1, 0, 0, 0, 0, 1, -1,
%e [ 8] 0, 0, 0, -1, 1, 0, 0, 1, -1,
%e [ 9] 0, 0, -1, 1, 0, 0, 0, 0, 1, -1,
%e The inverse of this triangle as a matrix begins
%e [-1, 0, 0, 0, 0, 0, 0]
%e [-1, -1, 0, 0, 0, 0, 0]
%e [-1, -2, -1, 0, 0, 0, 0]
%e [-1, -3, -1, -1, 0, 0, 0]
%e [-1, -4, -2, -1, -1, 0, 0]
%e [-1, -5, -2, -1, -1, -1, 0]
%e [-1, -6, -3, -2, -1, -1, -1]
%p with(numtheory): A206706 := proc(n,k) local moebius;
%p moebius := (n, k) -> `if`(k<>0 and irem(n,k) = 0, mobius(iquo(n,k)), 0);
%p moebius(n, k+1) - moebius(n, k) end:
%t mu[n_, k_] := If[k != 0 && Divisible[n, k], MoebiusMu[n/k], 0];
%t T[0, 0] = -1; T[n_, k_] /; 0 <= k <= n := mu[n, k+1] - mu[n, k];
%t Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Jul 12 2019 *)
%o (Sage)
%o def mur(n,k): return moebius(n//k) if k != 0 and n%k == 0 else 0
%o def A206706(n,k) : return -1 if n==0 and k==0 else mur(n,k+1) - mur(n,k)
%Y Cf. A123706, A008683.
%K sign,tabl
%O 0,5
%A _Peter Luschny_, Feb 11 2012