OFFSET
1,2
COMMENTS
These polynomials have zeros at complex z_k such that real(z_k) = -1/2 for all 0 < k < (2n-1), n > 1. A pair of zeros that are complex rationals occur at n = 2k(k+1) and have the values z = -1/2 +- (2k+1)/2*i for k > 0. P(n,0) = Stirling numbers of the first kind and the product of all the zeros of P(n,x) equals P(n,0)/n!.
LINKS
Vincenzo Librandi, Rows n = 1..32, flattened
EXAMPLE
P(1,x) = 1,
P(2,x) = 3 + 2x + 2x^2,
P(3,x) = 11 + 12x + 15x^2 + 6x^3 + 3x^4,
P(4,x) = 50 + 70x + 100x^2 + 64x^3 + 42x^4 + 12x^5 + 4x^6,
P(5,x) = 274 + 450x + 705x^2 + 570x^3 + 440x^4 + 200x^5 + 90x^6 + 20x^7 + 5x^8,
P(6,x) = 1764 + 3248x + 5453x^2 + 5110x^3 + 4410x^4 + 2526x^5 + 1360x^6 + 480x^7 + 165x^8 + 30x^9 + 6x^10,
P(7,x) = 13068 + 26264x + 46571x^2 + 48454x^3 + 45437x^4 + 30128x^5 + 18347x^6 + 8162x^7 + 3395x^8 + 980x^9 + 273x^10 + 42x^11 + 7x^12.
MATHEMATICA
p[n_, x_] := Sum[1/(k + x + x^2), {k, 1, n}]*Product[k + x + x^2, {k, 1, n}]; row[n_] := CoefficientList[ Series[p[n, x], {x, 0, 2*n-2}], x]; Table[row[n], {n, 1, 7}] // Flatten (* Jean-François Alcover, Aug 16 2013 *)
CROSSREFS
KEYWORD
easy,nice,nonn,tabf
AUTHOR
Paul D. Hanna, Sep 20 2002
EXTENSIONS
Keyword tabf by Michel Marcus, Aug 06 2017
STATUS
approved