login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A074248
Triangle of coefficients, read by rows of (2n+1) terms, where the n-th row forms a polynomial in x, P(n,x), of degree 2n and satisfies: P(n,x) = [Sum_{k=1..n} 1/(k + x + x^2)]*[Product_{k=1..n} (k + x + x^2)].
1
1, 3, 2, 2, 11, 12, 15, 6, 3, 50, 70, 100, 64, 42, 12, 4, 274, 450, 705, 570, 440, 200, 90, 20, 5, 1764, 3248, 5453, 5110, 4410, 2526, 1360, 480, 165, 30, 6, 13068, 26264, 46571, 48454, 45437, 30128, 18347, 8162, 3395, 980, 273, 42, 7
OFFSET
1,2
COMMENTS
These polynomials have zeros at complex z_k such that real(z_k) = -1/2 for all 0 < k < (2n-1), n > 1. A pair of zeros that are complex rationals occur at n = 2k(k+1) and have the values z = -1/2 +- (2k+1)/2*i for k > 0. P(n,0) = Stirling numbers of the first kind and the product of all the zeros of P(n,x) equals P(n,0)/n!.
LINKS
Vincenzo Librandi, Rows n = 1..32, flattened
EXAMPLE
P(1,x) = 1,
P(2,x) = 3 + 2x + 2x^2,
P(3,x) = 11 + 12x + 15x^2 + 6x^3 + 3x^4,
P(4,x) = 50 + 70x + 100x^2 + 64x^3 + 42x^4 + 12x^5 + 4x^6,
P(5,x) = 274 + 450x + 705x^2 + 570x^3 + 440x^4 + 200x^5 + 90x^6 + 20x^7 + 5x^8,
P(6,x) = 1764 + 3248x + 5453x^2 + 5110x^3 + 4410x^4 + 2526x^5 + 1360x^6 + 480x^7 + 165x^8 + 30x^9 + 6x^10,
P(7,x) = 13068 + 26264x + 46571x^2 + 48454x^3 + 45437x^4 + 30128x^5 + 18347x^6 + 8162x^7 + 3395x^8 + 980x^9 + 273x^10 + 42x^11 + 7x^12.
MATHEMATICA
p[n_, x_] := Sum[1/(k + x + x^2), {k, 1, n}]*Product[k + x + x^2, {k, 1, n}]; row[n_] := CoefficientList[ Series[p[n, x], {x, 0, 2*n-2}], x]; Table[row[n], {n, 1, 7}] // Flatten (* Jean-François Alcover, Aug 16 2013 *)
CROSSREFS
Sequence in context: A100804 A143175 A368557 * A266004 A379355 A206703
KEYWORD
easy,nice,nonn,tabf
AUTHOR
Paul D. Hanna, Sep 20 2002
EXTENSIONS
Keyword tabf by Michel Marcus, Aug 06 2017
STATUS
approved