login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A368557
Number of compositions of n such that the set of absolute differences is a subset of the set of parts.
1
1, 1, 1, 3, 2, 2, 11, 10, 13, 27, 58, 87, 157, 253, 438, 850, 1462, 2474, 4472, 7716, 13544, 24115, 42360, 74013, 131038, 229009, 401946, 707293, 1242059, 2177682, 3828831, 6716062, 11777179, 20678592, 36267148, 63586772, 111556751, 195610763, 342949281
OFFSET
0,4
EXAMPLE
For n=12, composition [2,1,2,4,3] of 12 has the set of absolute differences {1,2}, which is a subset of the set of parts {1,2,3,4}, so it counts towards a(12) = 157.
a(3) = 3 compositions: [3], [2,1], [1,2].
a(6) = 11 compositions: [6], [4,2], [2,4], [3,2,1], [3,1,2], [2,3,1], [2,1,3], [1,3,2], [1,2,3], [2,1,2,1], [1,2,1,2].
MATHEMATICA
g[0] = {{}}; g[n_Integer] := g[n] = Flatten[ParallelTable[Append[#, i] & /@ g[n - i], {i, 1, n}], 1];
isC[p_List] := Module[{d}, d = Abs[Differences[p]]; Union[d] === Union[Select[d, MemberQ[p, #] &]]];
a[n_Integer] := a[n] = Count[g[n], p_ /; isC[p]];
Monitor[Table[a[n], {n, 0, 19}], {n, Table[a[m], {m, 0, n - 1}]}] (* Robert P. P. McKone, Jan 02 2024 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
John Tyler Rascoe, Dec 29 2023
EXTENSIONS
a(24)-a(38) from Alois P. Heinz, Dec 30 2023
STATUS
approved