login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A206701 The number of words of length n created with the letters a,b,c with at least as many a's as b's and at least as many b's as c's and no adjacent letters forming the pattern aba and no subwords (any nonadjacent subsequence of letters) of the form cbc. 2
1, 1, 3, 9, 17, 46, 114, 262, 574, 1427, 2927, 6603, 14404, 30565, 63613, 138813, 280318, 587475, 1218642, 2483850, 5029611, 10412477, 20733046, 42016631, 84910771, 169447050, 337521488, 680231390, 1340806837, 2667729672, 5306731496, 10458274889, 20608397551 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..500

EXAMPLE

a(0) = 1: "".

a(1) = 1: "a".

a(2) = 3: "aa", "ab", "ba".

a(3) = 9: "aaa", "aab", "abc", "acb", "baa", "bac", "bca", "cab", "cba".

G.f. = 1 + x + 3*x^2 + 9*x^3 + 17*x^4 + 46*x^5 + 114*x^6 + 262*x^7 + ...

MAPLE

a:= n-> add(add(w(na, nb, n-na-nb, 0, 0),

        nb=ceil((n-na)/2)..min(n-na, na)), na=ceil(n/3)..n):

w:= proc(a, b, c, x, y) option remember;

      `if`([a, b, c]=[0$3], 1, `if`(a>0 and x<>2, w(a-1, b, c, 1, y), 0)+

      `if`(b>0, w(a, b-1, c, `if`(x=1, 2, 0), `if`(y>0, 2, 0)), 0)+

      `if`(c>0 and y<>2, w(a, b, c-1, 0, 1), 0))

    end:

seq(a(n), n=0..40);  # Alois P. Heinz, May 21 2012

MATHEMATICA

a[n_] := Sum[Sum[w[na, nb, n - na - nb, 0, 0], {nb, Ceiling[(n - na)/2], Min[n - na, na]}], {na, Ceiling[n/3], n}];

w[a_, b_, c_, x_, y_] := w[a, b, c, x, y] = If[{a, b, c} == {0, 0, 0}, 1, If[a > 0 && x != 2, w[a - 1, b, c, 1, y], 0] + If[b > 0, w[a, b - 1, c, If[x == 1, 2, 0], If[y > 0, 2, 0]], 0] + If[c > 0 && y != 2, w[a, b, c - 1, 0, 1], 0]];

a /@ Range[0, 40] (* Jean-François Alcover, Nov 12 2020, after Alois P. Heinz *)

PROG

(Sage)

def myavoids(w):

    v = w.count(2)

    if w.count(1)<v or v<w.count(3):

        return False

    else:

        return Word([1, 2, 1]).nb_factor_occurrences_in(w)==0 and Word([3, 2, 3]).nb_subword_occurrences_in(w)==0

for n in range(30):

    print(len([w for w in Words(3, length=n) if myavoids(w)]))

CROSSREFS

Cf. A176148, A176354.

Sequence in context: A128301 A348382 A176148 * A176354 A210337 A173140

Adjacent sequences:  A206698 A206699 A206700 * A206702 A206703 A206704

KEYWORD

nonn

AUTHOR

Grazia Barone, Feb 11 2012

EXTENSIONS

Extended beyond a(15) by Alois P. Heinz, May 21 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 20:40 EST 2021. Contains 349589 sequences. (Running on oeis4.)