login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A344051
a(n) = Sum_{k=0..n} binomial(n, k)*|Lah(n, k)|. Binomial convolution of the unsigned Lah numbers A271703.
0
1, 1, 5, 37, 361, 4301, 60001, 954325, 16984577, 333572041, 7151967181, 165971975621, 4139744524345, 110333560295557, 3126749660583641, 93819198847833061, 2969676820062708481, 98843743790129998865, 3449675368718647501717, 125921086600579132143781, 4796519722094585691925961
OFFSET
0,3
FORMULA
a(n) = n * n! * hypergeom([1 - n, 1 - n], [2, 2], 1] for n >= 1.
D-finite with recurrence +16*n*a(n) +6*(-8*n^2+5*n-1)*a(n-1) +(48*n^3-266*n^2+407*n-167)*a(n-2) +(-16*n^4+106*n^3-219*n^2+108*n+93)*a(n-3) +(n-4)*(2*n^3-13*n^2+16*n+25)*a(n-4) -(n-5)*(n-4)^3*a(n-5)=0. - R. J. Mathar, Jul 27 2022
a(n) ~ n^(n - 1/2) / (sqrt(6*Pi) * exp(n - 3*n^(2/3) + n^(1/3) - 1/3)) * (1 + 31/(54*n^(1/3))). - Vaclav Kotesovec, Apr 27 2024
MAPLE
aList := proc(len) local lah;
lah := (n, k) -> `if`(n = k, 1, binomial(n-1, k-1)*n!/k!):
seq(add(binomial(n, k)*lah(n, k), k = 0..n), n = 0..len-1) end:
lprint(aList(22));
MATHEMATICA
a[n_] := n n! HypergeometricPFQ[{1 - n, 1 - n}, {2, 2}, 1]; a[0] := 1;
Table[a[n], {n, 0, 20}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, May 10 2021
STATUS
approved