OFFSET
1,3
COMMENTS
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..387
MATHEMATICA
gf[k_] := gf[k] = If[k == 0, x, x*E^gf[k-1]]; a[n_, k_] := n!*Coefficient[Series[gf[k], {x, 0, n+1}], x, n]; a[n_] := Sum[k*(a[n, k] - a[n, k-1]), {k, 1, n-1}]/n; Array[a, 20] (* Jean-François Alcover, Mar 18 2014, after Alois P. Heinz *)
PROG
(Python)
from sympy import binomial
from sympy.core.cache import cacheit
@cacheit
def b(n, h): return 1 if min(n, h)==0 else sum([binomial(n - 1, j - 1)*j*b(j - 1, h - 1)*b(n - j, h) for j in range(1, n + 1)])
def T(n, k): return b(n - 1, k - 1) - b(n - 1, k - 2)
def a(n): return sum([k*T(n, k) for k in range(1, n)])
print([a(n) for n in range(1, 31)]) # Indranil Ghosh, Aug 26 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 14 2014
STATUS
approved