login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A001854
Total height of all rooted trees on n labeled nodes.
(Formerly M2081 N0822)
8
0, 2, 15, 148, 1785, 26106, 449701, 8927192, 200847681, 5053782070, 140679853941, 4293235236324, 142553671807729, 5116962926162738, 197459475792232725, 8152354312656732976, 358585728464893234305, 16741214317684425260142, 826842457727306803110997, 43073414675338753123113980
OFFSET
1,2
COMMENTS
Take any one of the n^(n-1) rooted trees on n labeled nodes, compute its height (maximal edge distance to root), sum over all trees.
Theorem [Renyi-Szekeres, (4,7)]. The average height if the tree is chosen at random is sqrt(2*n*Pi). - David desJardins, Jan 20 2017
REFERENCES
Rényi, A., and G. Szekeres. "On the height of trees." Journal of the Australian Mathematical Society 7.04 (1967): 497-507. See (4.7).
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
J. Riordan, Enumeration of trees by height and diameter, IBM J. Res. Dev. 4 (1960), 473-478.
J. Riordan, The enumeration of trees by height and diameter, IBM Journal 4 (1960), 473-478. (Annotated scanned copy)
FORMULA
a(n) = Sum_{k=1..n-1} A034855(n,k)*k. - Geoffrey Critzer, Mar 14 2013
A000435(n)/a(n) ~ 1/2 (see A000435 and the Renyi-Szekeres result mentioned in the Comments). - David desJardins, Jan 20 2017
MATHEMATICA
nn=20; a=NestList[ x Exp[#]&, x, nn]; f[list_]:=Sum[list[[i]]*i, {i, 1, Length[list]}]; Drop[Map[f, Transpose[Table[Range[0, nn]!CoefficientList[Series[a[[i+1]]-a[[i]], {x, 0, nn}], x], {i, 1, nn-1}]]], 1] (* Geoffrey Critzer, Mar 14 2013 *)
CROSSREFS
Also A234953(n) = a(n)/n.
Sequence in context: A253571 A111686 A371582 * A060226 A325060 A002103
KEYWORD
nonn
EXTENSIONS
More terms from Geoffrey Critzer, Mar 14 2013
STATUS
approved