login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A325060
E.g.f. A(x) satisfies: A(x) = Sum_{n>=0} x^n * exp(n^2*x) / A(x)^n.
0
1, 1, 2, 15, 148, 2565, 59046, 1825831, 70678280, 3343670217, 188213143690, 12380664239691, 937445644041996, 80731184378264173, 7828455595505947598, 847603141493494555695, 101732530008690207859216, 13451340197177805355768209, 1948644186311260903900163346, 307791516722206533702105826963, 52778747788778673408416550382100
OFFSET
0,3
EXAMPLE
E.g.f.: A(x) = 1 + x + 2*x^2/2! + 15*x^3/3! + 148*x^4/4! + 2565*x^5/5! + 59046*x^6/6! + 1825831*x^7/7! + 70678280*x^8/8! + 3343670217*x^9/9! + 188213143690*x^10/10! + ...
such that
A(x) = 1 + x*exp(x)/A(x) + x^2*exp(2^2*x)/A(x)^2 + x^3*exp(3^2*x)/A(x)^3 + x^4*exp(4^2*x)/A(x)^4 + x^5*exp(5^2*x)/A(x)^5 + x^6*exp(6^2*x)/A(x)^6 + ...
Note that a(n) is divisible by n, for n >= 1, where a(n)/n starts
[1, 1, 5, 37, 513, 9841, 260833, 8834785, 371518913, 18821314369, ...].
RELATED SERIES.
log(A(x)) = x + x^2/2! + 11*x^3/3! + 94*x^4/4! + 1849*x^5/5! + 42966*x^6/6! + 1385509*x^7/7! + 54885832*x^8/8! + 2654774721*x^9/9! + 152054810650*x^10/10! + ...
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n, A = concat(A, 0);
A[#A] = polcoeff( sum(m=0, #A, x^m * exp(m^2*x +x*O(x^n)) / Ser(A)^(m+1)), #A-1)); n!*A[n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A371582 A001854 A060226 * A002103 A191364 A308379
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 12 2019
STATUS
approved