OFFSET
0,3
FORMULA
a(n) = n! * sum(k=1..n, k*sum(i=0..n-k, (C(2*(k+i)-k-1,k+i-1) *stirling1(n-i,k))/ ((k+i)*(n-i)!))), n>0, a(0)=1.
a(n) ~ 25*log(5/4)*2^(2*n-7/2)*n^(n-1)/exp(n). - Vaclav Kotesovec, Jun 27 2013
MATHEMATICA
CoefficientList[Series[(1+x)^((1-Sqrt[1-4*x])/(2*x)), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jun 27 2013 *)
PROG
(Maxima) a(n):=n!*sum(k*sum((binomial(2*(k+i)-k-1, k+i-1)*stirling1(n-i, k))/ ((k+i)*(n-i)!), i, 0, n-k), k, 1, n);
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, May 31 2011
STATUS
approved