The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A233832 a(n) = 2*binomial(7*n+2,n)/(7*n+2). 7
1, 2, 15, 154, 1827, 23562, 320866, 4540200, 66096459, 983592304, 14894775896, 228784720710, 3555866673450, 55819631671902, 883738853546472, 14094715154157680, 226245021605612955, 3652242142988400570, 59254515909624764575, 965678197027521177200 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), this is the case p=7, r=2.
LINKS
J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906v1, Discrete Math., 308 (2008), 4660-4669.
Thomas A. Dowling, Catalan Numbers Chapter 7
Clemens Heuberger, Sarah J. Selkirk, and Stephan Wagner, Enumeration of Generalized Dyck Paths Based on the Height of Down-Steps Modulo k, arXiv:2204.14023 [math.CO], 2022.
Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955.
Sheng-liang Yang and Mei-yang Jiang, Pattern avoiding problems on the hybrid d-trees, J. Lanzhou Univ. Tech., (China, 2023) Vol. 49, No. 2, 144-150. (in Mandarin)
FORMULA
G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, where p=7, r=2.
a(n) = 2*binomial(7n+1, n-1)/n for n>0, a(0)=1. [Bruno Berselli, Jan 19 2014]
From Ilya Gutkovskiy, Sep 14 2018: (Start)
E.g.f.: 6F6(2/7,3/7,4/7,5/7,6/7,8/7; 1/2,2/3,5/6,1,7/6,4/3; 823543*x/46656).
a(n) ~ 7^(7*n+3/2)/(sqrt(Pi)*3^(6*n+5/2)*4^(3*n+1)*n^(3/2)). (End)
MATHEMATICA
Table[2 Binomial[7 n + 2, n]/(7 n + 2), {n, 0, 30}]
PROG
(PARI) a(n) = 2*binomial(7*n+2, n)/(7*n+2);
(PARI) {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(7/2))^2+x*O(x^n)); polcoeff(B, n)}
(Magma) [2*Binomial(7*n+2, n)/(7*n+2): n in [0..30]];
CROSSREFS
Sequence in context: A191364 A308379 A373357 * A185756 A362364 A239107
KEYWORD
nonn
AUTHOR
Tim Fulford, Dec 16 2013
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 17 15:57 EDT 2024. Contains 373463 sequences. (Running on oeis4.)