login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A233833
a(n) = 3*binomial(7*n+3, n)/(7*n+3).
5
1, 3, 24, 253, 3045, 39627, 543004, 7718340, 112752783, 1682460520, 25533901536, 392912889915, 6116090678334, 96133810101609, 1523687678528400, 24324750346691480, 390786855500604195, 6313161418594235271, 102494297789621214400, 1671366110239940499000
OFFSET
0,2
COMMENTS
Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), this is the case p=7, r=3.
LINKS
J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906v1, Discrete Math., 308 (2008), 4660-4669.
Thomas A. Dowling, Catalan Numbers Chapter 7
Clemens Heuberger, Sarah J. Selkirk, and Stephan Wagner, Enumeration of Generalized Dyck Paths Based on the Height of Down-Steps Modulo k, arXiv:2204.14023 [math.CO], 2022.
Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955.
FORMULA
G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, where p=7, r=3.
From Ilya Gutkovskiy, Sep 14 2018: (Start)
E.g.f.: 6F6(3/7,4/7,5/7,6/7,8/7,9/7; 2/3,5/6,1,7/6,4/3,3/2; 823543*x/46656).
a(n) ~ 7^(7*n+5/2)/(sqrt(Pi)*3^(6*n+5/2)*4^(3*n+2)*n^(3/2)). (End)
MATHEMATICA
Table[3 Binomial[7 n + 3, n]/(7 n + 3), {n, 0, 30}]
PROG
(PARI) a(n)=3*binomial(7*n+3, n)/(7*n+3);
(PARI) {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(7/3))^3+x*O(x^n)); polcoeff(B, n)}
(Magma) [3*Binomial(7*n+3, n)/(7*n+3): n in [0..30]];
KEYWORD
nonn
AUTHOR
Tim Fulford, Dec 16 2013
STATUS
approved