login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319754
a(n) = [x^n] Product_{k>=1} (1 - x^k)/(1 - n*x^k).
2
1, 0, 3, 24, 252, 3096, 46620, 823152, 16776648, 387413208, 9999989010, 285311493720, 8916100178843, 302875101365928, 11112006817455180, 437893890197853824, 18446744073423298800, 827240261878925204256, 39346408075284871499214, 1978419655659972977219880
OFFSET
0,3
LINKS
FORMULA
a(n) = [x^n] exp(Sum_{k>=1} ( Sum_{d|k} d*(n^(k/d) - 1) ) * x^k/k).
a(n) ~ n^n. - Vaclav Kotesovec, Sep 27 2018
MATHEMATICA
Table[SeriesCoefficient[Product[(1 - x^k)/(1 - n x^k), {k, 1, n}], {x, 0, n}], {n, 0, 19}]
Table[SeriesCoefficient[Exp[Sum[Sum[d (n^(k/d) - 1), {d, Divisors[k]}] x^k/k, {k, 1, n}]], {x, 0, n}], {n, 0, 19}]
CROSSREFS
Main diagonal of A319753.
Sequence in context: A365147 A080523 A203423 * A218301 A233833 A219536
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Sep 27 2018
STATUS
approved