OFFSET
0,3
FORMULA
G.f.: Product_{k>=1} (1 - x^k)^A000330(k).
G.f.: exp(-Sum_{k>=1} x^k*(1 + x^k)/(k*(1 - x^k)^4)).
G.f.: exp(-Sum_{k>=1} (2*sigma_4(k) + 3*sigma_3(k) + sigma_2(k))*x^k/(6*k)).
MAPLE
a:=series(mul((1-x^k)^(k*(k+1)*(2*k+1)/6), k=1..100), x=0, 34): seq(coeff(a, x, n), n=0..33); # Paolo P. Lava, Apr 02 2019
MATHEMATICA
nmax = 33; CoefficientList[Series[Product[(1 - x^k)^(k (2 k + 1) (k + 1)/6), {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 33; CoefficientList[Series[Exp[-Sum[x^k (1 + x^k)/(k (1 - x^k)^4), {k, 1, nmax}]], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, -Sum[Sum[d^2 (d + 1) (2 d + 1)/6, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 33}]
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Sep 27 2018
STATUS
approved