login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319757
Expansion of Product_{k>=1} (1 - x^k)^(k*(k+1)*(2*k+1)/6).
0
1, -1, -5, -9, -6, 35, 125, 275, 291, -241, -2111, -5989, -10990, -11660, 6454, 68298, 201859, 400794, 546122, 269907, -1175825, -4890783, -11746437, -20668698, -25146121, -7959643, 63707489, 236244458, 546634684, 956731805, 1220119643, 676723572, -1964409479, -8645307595
OFFSET
0,3
FORMULA
G.f.: Product_{k>=1} (1 - x^k)^A000330(k).
G.f.: exp(-Sum_{k>=1} x^k*(1 + x^k)/(k*(1 - x^k)^4)).
G.f.: exp(-Sum_{k>=1} (2*sigma_4(k) + 3*sigma_3(k) + sigma_2(k))*x^k/(6*k)).
MAPLE
a:=series(mul((1-x^k)^(k*(k+1)*(2*k+1)/6), k=1..100), x=0, 34): seq(coeff(a, x, n), n=0..33); # Paolo P. Lava, Apr 02 2019
MATHEMATICA
nmax = 33; CoefficientList[Series[Product[(1 - x^k)^(k (2 k + 1) (k + 1)/6), {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 33; CoefficientList[Series[Exp[-Sum[x^k (1 + x^k)/(k (1 - x^k)^4), {k, 1, nmax}]], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, -Sum[Sum[d^2 (d + 1) (2 d + 1)/6, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 33}]
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Sep 27 2018
STATUS
approved