login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A370742
Decimal expansion of Sum_{k>=2} H(k-1) * F(k) / (k*2^k), where H(k) = A001008(k)/A002805(k) is the k-th harmonic number and F(k) = A000045(k) is the k-th Fibonacci number.
1
5, 9, 6, 6, 7, 3, 4, 8, 7, 8, 3, 3, 9, 8, 2, 6, 9, 7, 3, 7, 7, 7, 0, 6, 8, 2, 4, 3, 6, 8, 3, 3, 0, 8, 3, 9, 2, 4, 6, 8, 7, 9, 6, 7, 0, 4, 2, 1, 8, 3, 8, 8, 2, 8, 2, 8, 6, 6, 0, 6, 1, 5, 1, 7, 6, 4, 1, 9, 6, 3, 6, 7, 5, 0, 1, 0, 6, 9, 8, 1, 2, 4, 3, 9, 9, 1, 8, 2, 3, 9, 6, 8, 1, 6, 1, 1, 0, 9, 3, 9, 6, 9, 5, 3, 7
OFFSET
0,1
LINKS
Kenny B. Davenport, Problem B-1222, Elementary Problems and Solutions, The Fibonacci Quarterly, Vol. 56, No. 1 (2018), p. 81; The Generating Function for Harmonic Numbers, Solution to Problem B-1222 by Amanda M. Andrews and Samantha L. Zimmerman, ibid., Vol. 57, No. 1 (2019), pp. 83-84.
FORMULA
Equals 4 * log(2) * log(phi) / sqrt(5), where phi is the golden ratio (A001622) (Davenport, 2018).
EXAMPLE
0.59667348783398269737770682436833083924687967042183...
MATHEMATICA
RealDigits[4 * Log[2] * Log[GoldenRatio] / Sqrt[5], 10, 120][[1]]
PROG
(PARI) 4 * log(2) * log(quadgen(5)) / sqrt(5)
KEYWORD
nonn,cons,easy
AUTHOR
Amiram Eldar, Feb 29 2024
STATUS
approved