login
A370743
Decimal expansion of Sum_{k>=2} H(k-1) * L(k) / (k*2^k), where H(k) = A001008(k)/A002805(k) is the k-th harmonic number and L(k) = A000032(k) is the k-th Lucas number.
1
1, 4, 0, 6, 7, 1, 2, 2, 9, 6, 2, 2, 6, 9, 7, 8, 9, 9, 4, 6, 5, 4, 8, 1, 8, 8, 1, 1, 2, 5, 2, 7, 9, 6, 0, 1, 1, 7, 9, 6, 1, 7, 8, 3, 5, 1, 7, 9, 1, 7, 4, 1, 0, 7, 0, 1, 2, 8, 0, 6, 9, 0, 4, 8, 3, 8, 2, 8, 4, 6, 7, 6, 4, 5, 2, 7, 6, 8, 1, 7, 2, 4, 1, 4, 0, 1, 6, 6, 4, 5, 1, 7, 8, 9, 4, 8, 0, 5, 7, 1, 1, 5, 5, 6, 8
OFFSET
1,2
LINKS
Kenny B. Davenport, Problem B-1222, Elementary Problems and Solutions, The Fibonacci Quarterly, Vol. 56, No. 1 (2018), p. 81; The Generating Function for Harmonic Numbers, Solution to Problem B-1222 by Amanda M. Andrews and Samantha L. Zimmerman, ibid., Vol. 57, No. 1 (2019), pp. 83-84.
FORMULA
Equals log(2)^2 + 4*log(phi)^2, where phi is the golden ratio (A001622) (Davenport, 2018).
EXAMPLE
1.40671229622697899465481881125279601179617835179174...
MATHEMATICA
RealDigits[Log[2]^2 + 4*Log[GoldenRatio]^2, 10, 120][[1]]
PROG
(PARI) log(2)^2 + 4*log(quadgen(5))^2
KEYWORD
nonn,cons,easy
AUTHOR
Amiram Eldar, Feb 29 2024
STATUS
approved