login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319758
Expansion of Product_{k>=1} 1/(1 - Sum_{j=1..k} x^(j*k)).
1
1, 1, 2, 3, 6, 8, 15, 20, 34, 48, 76, 103, 165, 222, 335, 461, 683, 919, 1352, 1813, 2611, 3519, 4985, 6651, 9408, 12501, 17401, 23165, 32009, 42312, 58241, 76748, 104725, 138017, 187155, 245521, 332135, 434536, 584023, 763799, 1022507, 1332549, 1779534, 2314437, 3077540, 3999825
OFFSET
0,3
LINKS
FORMULA
G.f.: Product_{k>=1} (1 - x^k)/(1 - 2*x^k + x^(k*(k+1))).
From Vaclav Kotesovec, Sep 27 2018: (Start)
a(n) ~ c * phi^(n/2), where
c = 188.4773924093125890061786423020365148584841831715... if n is even
c = 187.5693962190327254176348797865060646998844995050... if n is odd
phi = A001622 = (1+sqrt(5))/2 is the golden ratio. (End)
MAPLE
a:=series(mul(1/(1-add(x^(j*k), j=1..k)), k=1..100), x=0, 46): seq(coeff(a, x, n), n=0..45); # Paolo P. Lava, Apr 02 2019
MATHEMATICA
nmax = 45; CoefficientList[Series[Product[1/(1 - Sum[x^(j k), {j, 1, k}]), {k, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
Sequence in context: A075723 A294496 A138137 * A129374 A209405 A048809
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Sep 27 2018
STATUS
approved