login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319756
Expansion of Product_{k>=1} (1 - x^k)/(1 - k*x^k).
1
1, 0, 1, 2, 5, 6, 18, 20, 52, 76, 151, 214, 486, 638, 1265, 1990, 3572, 5288, 9968, 14568, 26270, 40246, 68326, 104414, 182191, 271892, 457636, 708012, 1164554, 1774422, 2945077, 4450020, 7261298, 11138514, 17827308, 27228060, 43860232, 66305840, 105486224, 161284674, 253846152
OFFSET
0,4
COMMENTS
Convolution of A006906 and A010815.
LINKS
FORMULA
G.f.: exp(Sum_{k>=1} ( Sum_{d|k} d*(d^(k/d) - 1) ) * x^k/k).
From Vaclav Kotesovec, Sep 27 2018: (Start)
a(n) ~ c * 3^(n/3), where
c = 4613.026226899587659466790384528262900057997961519... if mod(n,3)=0
c = 4612.491093385908314202944836907761153110706939289... if mod(n,3)=1
c = 4612.543916007416515763773288072302642108310934844... if mod(n,3)=2
(End)
MAPLE
a:=series(mul((1-x^k)/(1-k*x^k), k=1..100), x=0, 41): seq(coeff(a, x, n), n=0..40); # Paolo P. Lava, Apr 02 2019
MATHEMATICA
nmax = 40; CoefficientList[Series[Product[(1 - x^k)/(1 - k*x^k), {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 40; CoefficientList[Series[Exp[Sum[Sum[d (d^(k/d) - 1), {d, Divisors[k]}] x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d (d^(k/d) - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 40}]
PROG
(PARI) x='x+O('x^40); Vec(prod(n=1, 40, (1-x^n)/(1-n*x^n))) \\ Altug Alkan, Sep 27 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Sep 27 2018
STATUS
approved