login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A202854
The Matula-Göbel numbers of rooted trees T for which the sequence formed by the number of k-matchings of T (k=0,1,2,...) is palindromic.
1
1, 2, 5, 6, 18, 23, 26, 41, 54, 78, 103, 122, 162, 167, 202, 234, 283, 338, 366, 419, 486, 502, 547, 606, 643, 702, 794, 1009, 1014, 1093, 1098, 1346, 1458, 1506, 1543, 1586, 1597, 1818, 1906, 1999, 2106, 2371, 2382, 2462, 2626, 2719, 2962
OFFSET
1,2
COMMENTS
Alternatively, the Matula-Göbel numbers of rooted trees for which the matching-generating polynomial is palindromic.
A k-matching in a graph is a set of k edges, no two of which have a vertex in common.
The Matula-Göbel number of a rooted tree can be defined in the following recursive manner: to the one-vertex tree there corresponds the number 1; to a tree T with root degree 1 there corresponds the t-th prime number, where t is the Matula-Goebel number of the tree obtained from T by deleting the edge emanating from the root; to a tree T with root degree m>=2 there corresponds the product of the Matula-Göbel numbers of the m branches of T.
After activating the Maple program, the command m(n) will yield the matching-generating polynomial of the rooted tree having Matula-Göbel number n.
The given Maple program gives the required Matula-Göbel numbers up to L=200 (adjustable).
REFERENCES
C. D. Godsil, Algebraic Combinatorics, Chapman & Hall, New York, 1993.
LINKS
É. Czabarka, L. Székely, and S. Wagner, The inverse problem for certain tree parameters, Discrete Appl. Math., 157, 2009, 3314-3319.
Emeric Deutsch, Rooted tree statistics from Matula numbers, arXiv:1111.4288 [math.CO], 2011.
F. Göbel, On a 1-1-correspondence between rooted trees and natural numbers, J. Combin. Theory, B 29 (1980), 141-143.
I. Gutman and A. Ivic, On Matula numbers, Discrete Math., 150, 1996, 131-142.
I. Gutman and Yeong-Nan Yeh, Deducing properties of trees from their Matula numbers, Publ. Inst. Math., 53 (67), 1993, 17-22.
Eric Weisstein's World of Mathematics, Matching-Generating Polynomial
FORMULA
Define b(n) (c(n)) to be the generating polynomials of the matchings of the rooted tree with Matula-Göbel number n that contain (do not contain) the root, with respect to the size of the matching. We have the following recurrence for the pair M(n)=[b(n),c(n)]. M(1)=[0,1]; if n=prime(t), then M(n)=[xc(t),b(t)+c(t)]; if n=r*s (r,s,>=2), then M(n)=[b(r)*c(s)+c(r)*b(s), c(r)*c(s)]. Then m(n)=b(n)+c(n) is the generating polynomial of the matchings of the rooted tree with respect to the size of the matchings (called matching-generating polynomial). [The actual matching polynomial is obtained by the substitution x = -1/x^2, followed by multiplication by x^N(n), where N(n) is the number of vertices of the rooted tree.]
EXAMPLE
5 is in the sequence because the corresponding rooted tree is a path abcd on 4 vertices. We have 1 0-matching (the empty set), 3 1-matchings (ab), (bc), (cd), and 1 2-matchings (ab, cd). The sequence 1,3,1 is palindromic.
MAPLE
L := 200: with(numtheory): N := proc (n) local r, s: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: if n = 1 then 1 elif bigomega(n) = 1 then 1+N(pi(n)) else N(r(n))+N(s(n))-1 end if end proc: M := proc (n) local r, s: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: if n = 1 then [0, 1] elif bigomega(n) = 1 then [x*M(pi(n))[2], M(pi(n))[1]+M(pi(n))[2]] else [M(r(n))[1]*M(s(n))[2]+M(r(n))[2]*M(s(n))[1], M(r(n))[2]*M(s(n))[2]] end if end proc: m := proc (n) options operator, arrow: sort(expand(M(n)[1]+M(n)[2])) end proc: PAL := {}: for n to L do if m(n) = numer(subs(x = 1/x, m(n))) then PAL := `union`(PAL, {n}) else end if end do: PAL;
MATHEMATICA
L = 3000;
r[n_] := FactorInteger[n][[1, 1]];
s[n_] := n/r[n];
V[n_] := Which[n == 1, 1, PrimeOmega[n] == 1, 1 + V[PrimePi[n]], True, V[r[n]] + V[s[n]] - 1];
M[n_] := M[n] = Which[n == 1, {0, 1}, PrimeOmega[n] == 1, {x*M[PrimePi[n]][[2]], M[PrimePi[n]][[1]] + M[PrimePi[n]][[2]]}, True, {M[r[n]][[1]]* M[s[n]][[2]] + M[r[n]][[2]]*M[s[n]][[1]], M[r[n]][[2]]*M[s[n]][[2]]}];
m[n_] := Total[M[n]] // Expand;
PAL = {};
Do[If [m[n] == Numerator[Together[m[n] /. x -> 1/x]], PAL = Union[PAL, {n}]], {n, 1, L}];
PAL (* Jean-François Alcover, Jun 24 2024, after Maple code *)
CROSSREFS
Cf. A202853.
Sequence in context: A348439 A166753 A319756 * A274911 A282536 A248719
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Feb 14 2012
STATUS
approved